
CV-目标检测-Object Detection
文章平均质量分 67
多模态大规模图像分类/植物分类 的二级目录 CV之目标检测
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
超越YOLO检测一切!最强开集目标检测模型登场!学会这思路发文效率直接起飞
论文介绍了一种新的开放集目标检测和发现(OSODD)任务,并提出了一种OSR-ViT框架来解决这个任务。该任务要求模型能够准确检测和标识所有感兴趣的目标,包括已知类别(ID)和未知类别(OOD)的目标。提出了OSR-ViT框架,通过组合建议网络和ViT模型,实现了在OSODD任务上卓越的性能。引入了证据理论和对比学习模块,定义了EOD的损失函数,通过模型的对比学习和证据获取来提高类别分离性能。,利用证据深度学习理论来近似分类分布参数的贝叶斯先验,通过任务特定的自定义框架来提高实际性能。和Edge两个版本。原创 2024-09-28 21:10:34 · 972 阅读 · 0 评论 -
人脸关键点检测输出详解
8525可能代表预测框的数量,4可能代表每个预测框的坐标信息,通常会包含左上角和右下角的坐标,或者是中心点的坐标加上宽高。输入图像的形状是 [1, 3, 640, 640],代表有1张图像(batch size为1),每张图像有3个颜色通道(RGB),图像的大小为 640x640 像素。8525同样代表预测框的数量,2可能代表每个预测框属于某个类别的概率。模型的输出包含两个部分:'loc' 和 'conf',每个部分的输出形状分别为:[1, 8525, 4] 和 [1, 8525, 2]。原创 2023-07-21 16:47:45 · 401 阅读 · 0 评论 -
300-W人脸点标注数据集,能提取五官- 智能行为理解小组 (iBUG),伦敦帝国学院计算系
图 1: (a)-(d) 来自 MultiPIE、XM2VTS、AR、FRGC Ver.2 数据库的注释图像,以及 (e) 来自 XM2VTS 的注释不准确的示例。现有的面部数据库涵盖了很大的变化,包括:不同的主题、姿势、照明、遮挡等。C.萨戈纳斯、E.安东尼科斯、G、齐米罗普洛斯、S.扎菲里乌、M.潘蒂克。C. 萨戈纳斯、G. 齐米罗普洛斯、S. 扎菲里乌、M. 潘蒂克。C. 萨戈纳斯、G. 齐米罗普洛斯、S. 扎菲里乌、M. 潘蒂克。在某些情况下,提供的注释的准确性不太好(可能是由于人的疲劳)。原创 2023-07-20 11:16:24 · 508 阅读 · 0 评论 -
dhqt专利项目(私密)
种单EGB摄像头人物姿态识别技术基于4T的复杂场景人物识别技术基于a的复杂场景人物抠像技术。基于a的夏杂场景穿戴V火R设备的人物抠像技术基于A虹的复杂场景穿戴亚设备的多人人物抠像技术。—种人体检测方法和人体检则系统用于识别人体的装置、系统和方法。—种多EG五摄像头人物姿态识别技术。基于GPU计算的神经网络卷积方法。—种多RGB摄像头人物跟踪技术。人体手势检测方法和手势检测系统。的人脸调整—种多数据同步方法。使用机器学习进行人体动作处理。—种无绿幕人物抠像技术。人脸关键点的方法和系统。原创 2021-08-13 11:43:16 · 64 阅读 · 0 评论 -
peleeNet
1、Pelee分类网络PeleeNet是一种基于Densenet的轻量化网络变体(variant),主要面向移动端部署。分类网络的结构改进包括以下五点:1)Stem Block:实现输入图像空间维度的第一次降采样(stride=2)和通道数的增加。并且在不增加较多计算量的前提下,该模块能够确保较强的特征表达能力:2)Two-Way Dense Layer:受Inception结构的启发,由两路分别捕捉不同尺度感受野信息的网络分支构成。第一路经过一层1x1卷积完成bottleneck之.原创 2021-08-10 13:23:59 · 721 阅读 · 0 评论 -
Openvino权重文件 ssd300
ssd300Use Case and High-Level DescriptionThessd300model is the Caffe* framework implementation ofSingle-Shot multibox Detection (SSD)algorithm with 300x300 input resolution andVGG-16backbone. The network intended to perform visual object detect...原创 2021-08-10 11:47:17 · 402 阅读 · 0 评论 -
Object Detection C++ Demo
This demo showcases inference of Object Detection networks using Async API. Async API usage can improve overall frame-rate of the application, because rather than wait for inference to complete, the app can continue doing things on the host, while accelera原创 2021-08-10 11:17:06 · 382 阅读 · 0 评论