
Pytorch源码解析
文章平均质量分 71
Pytorch源码解析
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
如何使用Optuna在PyTorch中进行超参数优化
首先,我们将导入相关的包,并使用PyTorch创建一个简单的全连接神经网络。该全连接神经网络包含一个隐藏层。为了保证可复现性,我们还设置了一个手动随机种子。SEED = 42return x接下来,我们将设置超参数优化所需的标准组件。我们将执行以下步骤:1.下载FashionMNIST数据集。2.定义超参数搜索空间:我们定义(a)想要优化的超参数,以及(b)允许这些超参数取值的范围。在我们的例子中,我们将选择以下超参数:神经网络隐藏层大小——整数值。学习率——原创 2024-12-05 11:21:20 · 992 阅读 · 0 评论 -
PyTorch源码解析torch/nn/modules/module.py
创建的副本,那么会发出警告,因为这些副本的参数是从原始模型中复制过来的,它们在自动求导中不是叶节点,所以不会积累梯度。函数内的部分文档说明了这个方法的作用,即将所有模型参数的梯度设为零。这是一段 PyTorch 的代码,用于定义模型训练中常见的几个方法,包括进入评估模式、设置参数。函数内的部分文档说明了这个方法的作用,即把模块设置为评估模式。否则,如果参数的梯度不是来自于另一个计算的结果,那么将参数的。函数内的部分文档说明了这个方法的作用,即改变模块中参数的。是一个循环,遍历模块的所有参数。原创 2023-07-03 14:40:16 · 332 阅读 · 0 评论 -
torch.nn.MarginRankingLoss文本排序
创建一个标准,用于测量给定输入 x1、x2、两个 1D 小批量或 0D 张量以及标签 1D 小批量或 0D 张量 y(包含 1 或 -1)的损失。如果 y = 1,那么它假定第一个输入的排名应该比第二个输入更高(具有更大的值),反之 y = -1=。小批量中每对样本的损失函数为:对于包含N NN个样本的batch数据 D ( x 1 , x 2 , y ) D(x1,x2,y)D(x1,x2,y), x 1 x1x1, x 2 x2x2是给定的待排序的两个输入,y yy代表真实的标签,属于{ 1 ,原创 2022-06-14 15:33:07 · 830 阅读 · 0 评论 -
Accelerate launch pytorch分布式训练
在实践中,这意味着:你必须特别注意让你的输入中的所有张量具有相同的形状(所以没有动态填充),并且不应该使用具有。在单个进程上执行的语句:有些语句只需要在特定的进程上执行而无需在所有进程上执行,如数据下载、记录日志、以及打印进度条。上同时部署你的脚本会带来一个复杂的问题:虽然每个进程都是按顺序执行所有指令,但有些可能比其他的快。的模块不应该在不同的设备上分割。这可能会导致明显的减速,因为所有的进程都需要与它们进行更多次的通信。首先,你应该等待所有的进程到达脚本中的 “延迟执行” 所描述的那个点。原创 2023-07-04 03:02:10 · 5860 阅读 · 0 评论 -
深度学习优化器SGD源码解析:tf/pytorch
wwithgradientgwhenmomentumis 0:新参数 = 旧参数 - 学习率*梯度momentumWhen。原创 2023-09-24 23:29:01 · 254 阅读 · 0 评论 -
使用自定义数据集分布式训练的例子 如没有nvlink 需要用torchrun
基本环境配置请参照。为了进行分布式训练,我们需要准备一台配有多个 GPU 的主机。我们推荐在 NVLinks 桥接的多显卡主机上进行分布式训练,否则训练效率会大幅下降,可使用下述命令查询显卡之间的桥接方式。为了进行分布式训练,运行以下命令配置分布式训练环境。注意:如果不支持nvlink需要用torchrun假设我们有一台配有 2 个 GPU 的机器,采用最基础的分布式训练配置,配置过程如下图所示,红色方框中代表比较重要的参数。原创 2023-07-04 16:59:49 · 717 阅读 · 1 评论 -
装特定的torch和cuda,cu118
【代码】装特定的torch和cuda,cu118。原创 2024-07-15 11:00:36 · 2327 阅读 · 0 评论 -
accelerate launch/torchrun
采用[:](例如node1.example.com:29400)的形式,指定C10d集合点后端应实例化和托管的节点和端口。要在同一主机上运行单节点、多工作线程的多个实例(单独的作业),我们需要确保每个实例(作业)都设置在不同的端口上,以避免端口冲突(或更糟糕的是,两个作业被合并为一项工作)。节点离开(缩小规模):代理收到离开通知,所有现有的工作人员都停止,形成新的工作人员,并且所有工作人员都以新的和。多节点多工作线程:在参与训练的所有节点上使用相同的参数启动启动器。原创 2023-07-04 14:29:31 · 2068 阅读 · 0 评论 -
查看pytorch真正使用的nccl
查看pytorch真正使用的nccl。原创 2024-08-14 23:09:00 · 1913 阅读 · 0 评论 -
torchrun 分布式 python入口程序#!/home/ailab/.conda/envs/chatglm_etuning/bin/python
re.sub() 是Python正则表达式库的一个函数,用于替换字符串中的子串。sys.argv是一个包含命令行参数的列表,sys.argv[0]是脚本的名称。这行代码使用正则表达式删除了脚本名称末尾的-script.pyw或.exe后缀。sys.exit(main()) #调用了之前导入的main函数,并将其返回值作为程序的退出码。# -*- coding: utf-8 -*- #一个Python的入口脚本,用于启动一个分布式程序。,即脚本名称中末尾的 -script.pyw 或 .exe 后缀。原创 2023-07-12 09:56:46 · 390 阅读 · 0 评论 -
Pytorch前负责人谈AI发展新趋势,不要再卷基座模型和MAAS了
笔者看来,就像Pytorch的成功在于它的开发者生态,抖音的成功在于它的自媒体生态,随着底层模型和MAAS为代表的工具链趋向于成熟、可替代性进一步增强,平台实现无关的公域和私域AI应用要素(数据集、大小模型、知识库、工具或API等)的存用(资源库)和能力融合暴露(网关)以及进一步围绕它们的生态运营将成为新的战场。"小模型更容易调优,更容易提高质量,更容易专注于特定的问题空间,所以它让千花齐放。她提出了"百花齐放"的策略,即使用更小、更容易调优的模型,这些模型可以针对特定的问题空间进行定制。原创 2024-11-27 09:54:47 · 864 阅读 · 0 评论 -
gct pytorch
该 Python 类设计用于将电子健康记录(EHR)中的原始特征数据转换为适合用于深度学习模型的格式,特别是在论文关注学习 EHR 数据隐藏结构的背景下。这个类是一个自定义的神经网络模块,用于从电子健康记录(EHR)中嵌入不同类型的特征。的类,它继承自 PyTorch 的。这段Python代码定义了一个名为。每种类型的嵌入应用层。原创 2024-05-07 23:27:39 · 467 阅读 · 0 评论 -
torch distributed源码解析torch/distributed/distributed_c10d.py 之cleanup()
Poecleanup。原创 2024-12-16 15:56:50 · 1098 阅读 · 0 评论 -
transformers4.42.4 torch2.3.1 支持flash Attention2,比flash Attention快一倍。 24年7月
如果是清华源,缓存目录不是pip目录。原创 2024-07-16 17:13:56 · 437 阅读 · 0 评论 -
torch分布式源码解析]/ms-python.vscode-pylance-2024.11.2/dist/typeshed-fallback/stdli
python复制导入模块中的context和reduction(别名为reducer)错误类和Process类:python复制入进程相关函数:python复制模块导入队列类:python复制freeze_support函数列表定义了模块的公共接口,列出所有可以被from module import *导入的名称。后面的大量赋值语句都是将context._default_context中的方法绑定到模块级别python复制。原创 2024-11-14 16:42:09 · 197 阅读 · 0 评论 -
PyTorch数据并行(DP/DDP)浅析
与每个step一个batch数据相比,数据并行是指每个step用更多的数据多个batch)进行计算——即多个batch的数据并行进行前向计算。既然是并行,那么就涉及到多张卡一起计算。单卡和多卡训练过程如下图[1]各卡分别计算损失和梯度,即图中红线部分;所以梯度整合到主device,即图中蓝线部分;主device进行参数更新,并将新模型拷贝到其他device上,即图中绿线部分。左图是单GPU训练;右图是多GPU训练的一个变体。原创 2024-08-06 22:28:49 · 1139 阅读 · 0 评论 -
pytorch 模型并行 数据并行区别
数据并行:适合于大规模数据集,通过将数据分割到多个GPU上来加速训练,简单易用,但可能面临通信瓶颈。模型并行:适合于大型模型,通过将模型拆分到多个设备来克服内存限制,实现复杂,但实现难度较高。选择合适的并行策略取决于具体的应用需求和硬件资源配置。在实际应用中,可能会结合使用这两种策略以达到最佳效果。原创 2024-11-21 21:53:30 · 603 阅读 · 0 评论 -
timm库中的默认路径 /home/xxx/.cache/torch/hub/checkpoints/
【代码】timm库中的默认路径 /home/xxx/.cache/torch/hub/checkpoints/原创 2024-10-18 10:03:31 · 142 阅读 · 0 评论 -
Torch-TensorRT针对 NVIDIA GPU 的 PyTorch 推理代码的框架内编译In-framework compilation
Torch-TensorRT针对 NVIDIA GPU 的 PyTorch 推理代码的框架内编译Torch-TensorRT 是 PyTorch 的推理编译器,通过 NVIDIA 的 TensorRT 深度学习优化器和运行时针对 NVIDIA GPU。它通过接口支持即时 (JIT) 编译工作流程torch.compile,也支持提前 (AOT) 工作流程。Torch-TensorRT 无缝集成到 PyTorch 生态系统中,支持混合执行优化的 TensorRT 代码和标准 PyTorch 代码。原创 2024-12-09 10:49:32 · 1306 阅读 · 0 评论 -
在PyTorch框架中model.train() 和 model.eval()的作用是什么?
2024年11月14日 00:00广东本人是某双一流大学硕士生,也最近刚好准备参加 2024年秋招,在找大模型算法岗实习中,遇到了很多有意思的面试,所以将这些面试题记录下来,并分享给那些和我一样在为一份满意的offer努力着的小伙伴们!!!原创 2024-11-14 15:53:36 · 795 阅读 · 0 评论 -
使用Pytorch构建视觉语言模型(VLM)
通过从零开始实现视觉语言模型(VLM),我们深入探讨了视觉和语言处理在现代人工智能系统中的融合方式。本文详细解析了 VLM 的核心组件,包括图像编码器、视觉-语言投影器、分词器、位置编码和解码器等模块。我们强调了多模态融合的关键步骤,以及在实现过程中需要注意的训练策略和数据需求。构建 VLM 不仅加深了我们对视觉和语言模型内部机制的理解,还为进一步的研究和应用奠定了基础。随着该领域的迅速发展,新的架构设计、预训练策略和微调技术不断涌现。原创 2024-11-23 13:49:00 · 639 阅读 · 0 评论 -
Pytorch源码DDP之 DistributedSampler
我来逐行详细解释这段代码,同时说明数据是如何广播到多卡的。原创 2024-11-13 20:56:47 · 144 阅读 · 0 评论 -
[Pytorch源码解析] 之 交叉熵损失class CrossEntropyLoss(_WeightedLoss):
下面是对给定代码逐行的解释:python复制python复制python复制intfloatpython复制__init__weightTensorNoneNone-100reduceNonereduction'mean'0.0python复制weightreducereductionpython复制python复制python复制forwardinputtargetTensorTensorpython复制forwardinputtargetweightreductionpython。原创 2024-05-18 14:53:51 · 1364 阅读 · 0 评论