
OCR文字识别
文章平均质量分 51
OCR文字识别
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
RPN、CTPN和EAST的区别
RPN、CTPN和EAST的区别。原创 2023-06-10 10:10:40 · 90 阅读 · 0 评论 -
CTPN文本检测详解 面试版本
除此之外,如果Anchor大小对应conv5/fc尺度,那就要求Bounding box regression把很小的框回归到很大,这已经超出Regression小范围修正框的设计目的。由于CTPN针对的是横向排列的文字检测,所以其采用了一组(10个)等宽度的Anchors,用于定位文字位置。不同文本在y方向上高度差距很大,所以设置Anchors高度为11-283,用于覆盖不同高度的文本目标。,可以是很长的文本,也可以是很短的文本.如果采用通用目标检测的方法,将会面临一个问题:**原创 2023-06-10 09:24:02 · 933 阅读 · 0 评论 -
Python统计词频(ocr识别统计里面用到),建立字典,输出json
with open("C:\\Users\\Administrator\\Desktop\\Tencent\\data\\data\\tokens.tsv",mode="r",encoding="utf-8") as f: token = f.readlines()[0].strip().split("\t")token_dict = {k:0 for k in token}with open("C:\\Users\\Administrator\\Desktop\\Tencent\\data\.原创 2021-12-08 18:12:02 · 633 阅读 · 0 评论 -
python笔记(ocr统计里面用到):统计识别字符串里各种字符的个数 + pandas删除某列
str=input("请输入一串字符:")result={}for i in str: result[i]=str.count(i)print(resoult)原创 2021-12-07 16:13:04 · 417 阅读 · 0 评论 -
公式识别 -- 百面OCR
1.说一说你了解的公式识别。mathpix,2.请简述attention机制,以及在公式识别中的应用。LaTeX_OCR和LaTeX_OCR_PRO,3.请简述densenet基本原理,以及解释为什么在OCR中有用。4.简述文字识别中常用评价指标一般来说评价文字识别有精度、召回、误识别、编辑距离等困惑度(perplexity)的基本思想是:给测试集的句子赋予较高概率值的语言模型较好,当语言模型训练完之后,测试集中的句子都是正常的句子,那么训练好的模型就是在测试集上的概原创 2021-11-17 16:31:22 · 601 阅读 · 0 评论 -
SRN 语义推理网络
发现基于RNN的方法存在一些明显的缺点,如时间依赖的解码方式和语义上下文的单向串行传输,这极大地限制了语义信息的帮助和计算效率。为了减轻这些限制,我们提出了一种新颖的端到端可训练框架,该框架称为语义推理网络(SRN)什么是空间规整( spatial regularization)?为什么要做空间规整? 因为标签之间没有标注空间信息,难以得到标签之间潜在的空间关系。如何做空间规整?在Learning Spatial Regularization with Image-levelSupervis原创 2021-10-22 14:57:09 · 1967 阅读 · 0 评论 -
ppocr 源码阅读:ppocr.modeling.architecures 之build_model模块
在train.py第33行中有build_model模块,该模块用来构建模型,是比较关键的模块。from ppocr.modeling.architectures import build_modelimport copyimport importlibfrom .base_model import BaseModelfrom .distillation_model import DistillationModel__all__ = ['build_model']...原创 2021-10-21 11:49:42 · 570 阅读 · 0 评论 -
【精选】OCR精选10个问题 百度paddleocr
【精选】OCR精选10个问题Q1.1.1:基于深度学习的文字检测方法有哪几种?各有什么优缺点?A:常用的基于深度学习的文字检测方法一般可以分为基于回归的、基于分割的两大类,当然还有一些将两者进行结合的方法。(1)基于回归的方法分为box回归和像素值回归。a. 采用box回归的方法主要有CTPN、Textbox系列和EAST,这类算法对规则形状文本检测效果较好,但无法准确检测不规则形状文本。b. 像素值回归的方法主要有CRAFT和SA-Text,这类算法能够检测弯曲文本且对小文本效果优秀但原创 2021-10-20 10:34:49 · 1874 阅读 · 0 评论