
对话系统QA-Rasa
文章平均质量分 86
对话系统QA-Rasa
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
[伟大工程师]达巴拉·拉贾戈帕尔(“RAJ”)·雷迪Reddy - 语音识别 Hearsay I 1994 年图灵奖
对信息和电信政策的杰出贡献”而获得大川奖,2005 年因其“在计算机科学和机器人技术方面的杰出成就”而获得本田奖,2005 年 IJCAI唐纳德·E·沃克 (Donald E. Walker) 杰出服务奖表彰他“对人工智能界的杰出服务”,并于 2006 年因其“在机器人和智能系统方面的开创性研究以及他在制定国家信息和电信政策方面的重大贡献”而荣获万尼瓦尔·布什奖 (Vannevar Bush Award)。2001年,雷迪被授予莲花士勋章,这是印度政府授予的第三高平民奖,以表彰他为国家做出的杰出贡献。原创 2024-05-18 18:16:45 · 974 阅读 · 0 评论 -
[伟大工程师]爱德华·A·费根鲍姆 DENDRAL 化学专家系统、Mycin医疗诊断
爱德华·阿尔伯特·费根鲍姆 (Edward Albert Feigenbaum) 被誉为专家系统之父。原创 2024-05-18 18:09:36 · 1842 阅读 · 0 评论 -
医疗专家系统Mycin
由于MYCIN是一个早期的专家系统,具体的用户界面和交互方式可能与现代软件有所不同,但它的核心原理和组件在当今的许多知识型系统中仍然适用。由于MYCIN是一个早期的专家系统,具体的用户界面和交互方式可能与现代软件有所不同,但它的核心原理和组件在当今的许多知识型系统中仍然适用。MYCIN程序是一个典型的知识型计算机程序,它专注于传染病,特别是细菌性败血症的治疗选择。MYCIN程序是一个典型的知识型计算机程序,它专注于传染病,特别是细菌性败血症的治疗选择。知识库和医生输入的患者数据。MYCIN的静态知识库。原创 2024-05-18 17:43:51 · 2640 阅读 · 0 评论 -
BaiChuan13B多轮对话微调范例
"""找出所有全连接层,为所有全连接添加adapter"""r=64,原创 2023-08-24 17:55:07 · 540 阅读 · 0 评论 -
大模型 角色化生成 源码解析:/data/pre.py
综上所述,这段代码主要用于处理 './data' 文件夹下的文件,使用 thulac 对文本进行分词,并将处理后的结果写入输出文件 'crosstalk.txt'。注意,它每次都是处理一对行,然后将这一对行写入到输出文件中。当 lst_line 不为 None 时,它会将 lst_line 和当前行的内容编码为 'utf-8',并写入输出文件 'crosstalk.txt'。对于读取到的每一行,它先使用 'gbk' 编码进行解码,然后移除了字符串中 ":" 之前的所有字符,同时去除了字符串两端的空白字符。原创 2023-07-26 10:51:52 · 247 阅读 · 0 评论 -
一起来看看最新的对话状态追踪(DST)模型
模型输入上轮回答、当前问句、上轮对话状态,只有当某个槽值对的状态操作为UPDATE时,模型生成对应的更新值。本文将domain和slot一起编码,通过bert学习context和槽值对的内在联系,从而建立一个高效轻便的检索式模型。1)Bert对context,某个domain-slot以及其对应的所有value取值集合分别进行encode,均取encode输出的[CLS]对应位置为隐层表示。下面我们介绍三篇对话状态追踪的相关论文,分别可以概括为检索式、生成式、生成检索结合,从而了解当前主流的DST模型。原创 2023-07-24 16:25:32 · 541 阅读 · 0 评论 -
章节四: RASA 训练数据介绍
因此机器人需要特别多的数据,也就是模拟人的问法,让机器人理解这些意图特征,理解人的问法,以及人是如何回复别人的问题,这部分内容在Rasa里面称为训练数据。如果开发者未在训练数据文件中指定版本key,Rasa 将假定开发者使用的是已安装的 Rasa 版本支持的最新训练数据格式。如果在不同的故事中经常重复一系列步骤,那么使用它们是有意义的,但是没有检查点的故事更容易阅读和编写。相反,开发者可以利用 NLU pipline的输出,它使用意图和实体的组合来引用用户可以发送的具有相同含义的所有可能消息。原创 2023-07-18 13:46:09 · 385 阅读 · 0 评论 -
一起来看看最新的对话状态追踪(DST)模型
概括来讲,NLU负责对用户输入进行理解,随后进入DM模块,负责系统状态的追踪以及对话策略的学习,控制系统的下一步动作,而NLG则配合系统将要采取的动作生成合适的对话反馈给用户。而对于span-based slots, 使用span extraction-based method,找出某slot的对应value在context中的起止、终止位置。DST(对话状态追踪 Dialog State Tracking),负责维护对话系统状态(各个槽对应的值以及相应的概率),并根据当前轮对话更新对话状态。原创 2023-07-15 10:36:52 · 987 阅读 · 0 评论 -
NeurIPS 2022|DeepMind最新研究:大模型背后的ICL可能与数据分布密切相关
本文对ICL的发生机制进行了探索,与其他工作不同的是,作者以数据分布作为切入点进行研究,并且也获得了不小的理论发现。实验证明,数据中越是蕴藏着丰富的语义变化和差异,ICL进行的也越顺利。作者也进一步研究了ICL与传统权重学习之间的关系,同时提出了一种折中方案使模型能够同时具备这两种学习模式的优势。此外,作者强调了模型架构对ICL的决定性作用,基于Transformer的架构设计天然契合ICL的优化环境,这也是Transformer相比传统递归模型的优势体现。原创 2023-06-20 16:02:42 · 455 阅读 · 0 评论 -
论文笔记 - 对话系统中的 OOD (Out of Domain出域)问题
人工智能与机器学习工程师最近看了下 2021年关于 OOD 的几篇 paper,记录一下~对话系统中的 domain 都是预先定义好的,而在实际应用场景中,会有很多现有系统回答不了的问题(),我们把系统支持的意图称为,系统不支持的意图称为OOD 是需要被拒识的。处理 OOD 问题一般分为有监督和无监督两类方法。有监督方法相对更直接,收集好 OOD 数据,在 IND 和OOD 上训练一个二分类器,或者直接学习一个K+1 的分类器。原创 2023-06-20 15:50:12 · 1333 阅读 · 0 评论 -
智能客服机器人:基于知识图谱的多轮对话系统
原创 郑德权、衣景龙等 悦智网 2021-10-29 15:30━━━━近年来,随着人工智能的快速发展,人机交互能力不断增强,其中问答技术能够在保证一定准确度的情况下极大地简化用户的搜索操作,在节约时间的同时,还能够加深用户对搜索事物的了解程度,百度公司的小度、苹果公司的Siri等正是基于问答技术形成的产品。作为问答技术的关键构造,对话系统根据对话目的或应用场景的不同,可以分为任务型对话以及非任务型对话。前者一般面向特定任务,目的是尽可能准确且使用较少对话轮次完成用户提问、查询等语义任务;后者则以聊天机器人原创 2023-06-20 14:44:50 · 3324 阅读 · 1 评论