
CV-图像分割-SAM
文章平均质量分 70
多模态大规模图像分类/植物分类 的二级目录 CV-图像分割-SAM
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
实例分割具体有哪些,具体怎么操作
实例分割结合了目标检测和语义分割的优点,通过多种算法实现对图像中不同实例的精确识别和分割。常见的方法包括基于目标检测的Mask R-CNN和基于语义分割的方法。通过合理的数据准备、模型构建和训练,可以有效地完成实例分割任务。原创 2024-09-27 16:08:57 · 686 阅读 · 0 评论 -
Grounding DINO 是一种先进的零样本物体检测模型,由 IDEA-Research 在2023年开发
的对象,并适应新的对象和场景,使其在各种实际应用中具有很高的通用性和灵活性。Grounding DINO 是一种先进的零样本物体检测模型,由。Grounding DINO 是一个革命性的算法,广泛应用于。,每个框都有所有输入词的相似度评分。领域,展示了其强大的泛化能力和多样化的应用场景。Grounding DINO 的主要优势在于其。此外,Grounding DINO 还被用于。”,从而在AI系统中实现更高效的物体检测。Grounding DINO的推出。来生成图像中的特定位置的对象。原创 2024-09-18 22:11:36 · 520 阅读 · 0 评论 -
IDEA研究院Grounding DINO 1.5 双版本齐发,开创端侧部署新时代
计算机视觉与机器人研究中心(CVR,Computer Vision and Robotics)立足于计算机视觉和机器人方向的基础研究,专注于大规模视觉表示学习、物体检测与识别、智能控制等问题,通过核心技术的研究和突破,打造世界领先的机器视觉和智能机器人技术。例如,在医疗领域,通过微调后的Grounding DINO 1.5 Pro可以更准确地识别医疗影像中的病灶,辅助医生进行诊断,提高诊疗效率。Grounding DINO 1.5 在其前身 Grounding DINO 的基础上,通过结合更大的视觉。原创 2024-09-18 20:58:43 · 983 阅读 · 0 评论