ResNet网络的训练和预测

本文详细介绍了如何使用OneFlow进行ResNet50网络的训练和预测,包括准备工作、训练、验证、预测等步骤。通过提供的train.sh和inference.sh脚本,用户可以快速上手ResNet50模型。此外,还讨论了ResNet50 v1.5的改进以及混合精度训练的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ResNet网络的训练和预测
简介 Introduction
图像分类与CNN
图像分类 是指将图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法,是计算机视觉中其他任务,比如目标检测、语义分割、人脸识别等高层视觉任务的基础。
ImageNet 大规模视觉识别挑战赛(ILSVRC),常称为 ImageNet 竞赛,包括图像分类、物体定位,以及物体检测等任务,推动计算机视觉领域发展最重要的比赛之一。
在2012年的 ImageNet 竞赛中,深度卷积网络 AlexNet 横空出世。以超出第二名10%以上的top-5准确率,勇夺 ImageNet2012 比赛的冠军。从此,以 CNN(卷积神经网络) 为代表的深度学习方法开始在计算机视觉领域的应用开始大放异彩,更多的更深的CNN网络被提出,比如 ImageNet2014 比赛的冠军 VGGNet, ImageNet2015 比赛的冠军 ResNet。
ResNet
ResNet 是2015年ImageNet竞赛的冠军。目前,ResNet 相对对于传统的机器学习分类算法而言,效果已经相当的出色,之后大量的检测,分割,识别等任务也都在 ResNet 基础上完成。
OneFlow-Benchmark 仓库中,提供 ResNet50 v1.5 的 OneFlow 实现。在 ImageNet-2012 数据集上训练90轮后,验证集上的准确率能够达到:77.318%(top1),93.622%(top5)。
更详细的网络参数对齐工作,见 OneFlow-Benchmark的cnns 部分
在这里插入图片描述

关于 ResNet50 v1.5 的说明:
ResNet50 v1.5 是原始 ResNet50 v1 的一个改进版本,相对于原始的模型,精度稍有提升 (~0.5% top1) 。
本文就以上面的 ResNet50 为例,一步步展现如何使用 OneFlow 进行 ResNet50 网络的训练和预测。
主要内容包括:
• 准备工作
• 项目安装和准备工作
• 快速开始
• 预测/推理
• 训练和验证
• 评估
• 更详细的说明
• 分布式训练
• 混合精度训练与预测
• 进阶
• 参数对齐
• 数据集制作(ImageNet2012)
• OneFlow 模型转 ONNX 模型
准备工作 Requirements
别担心,使用 OneFlow 非常容易,只要准备好下面三步,即可开始 OneFlow 的图像识别之旅。
• 安装 OneFlow,安装方式参考 OneFlow项目主页
• 克隆/下载 OneFlow-Benchmark 仓库。
git clone git@github.com:Oneflow-Inc/OneFlow-Benchmark.git
cd OneFlow-Benchmark/Classification/cnns
• 准备数据集(可选)
• 直接使用 synthetic 虚拟合成数据集
• 下载制作的 Imagenet(2012) 迷你数据集 解压放入data目录
• 或者:制作完整 OFRecord 格式的 ImageNet 数据集(见下文进阶部分)
提供了通用脚本:train.sh 和 inference.sh,它们适用于此仓库下所有cnn网络模型的训练、验证、推理。可以通过设置参数使用不同的模型、数据集来训练/推理。
关于模型的说明:
默认情况下,使用resnet50,也可

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值