PCCP:机器学习指导层状双氢氧化物(LDHs)析氧活性

c56a148719f2eee31c7befcb17b4b405.jpeg

研究背景

现代社会使用的大部分能源是化石燃料生产,但会污染环境,并导致全球变暖。因此,氢气也被认为是未来的新能源。电化学水分解是一种主要的制氢方法。它的半反应之一是析氧反应(OER),它表现出缓慢的动力学和高过电位。然而,使用合适的催化剂可以克服这两个问题。层状双氢氧化物(LDHs)由于其可调的性质,是析氧反应的优良催化剂。但可调节性质和其他因素之间的相互作用并不总是有利于LDHs的OER催化活性。

因此,北京林业大学薛智敏和中国人民大学牟天成等人应用机器学习(ML)来预测LDHs的Cdl值。利用化学成分、结构形态、电极、载体和测试条件作为关键特征,测试了14种不同的算法,然后将所得的Cdl值拟合到ML模型中。使用Pearson系数相关性对13个特征进行评估。此外,还构建了一个模型来预测OER的LDHs过电位。最后,使用实验数据测试了ML算法的预测能力,并确实获得了可靠的性能。


模型与实验方法

数据来源于在科学网搜索“LDH”、“OER”和“overpotential”关键字的文献数据。作者选用了催化材料的化学成分、催化剂形态、载体、测试条件四个标准中的13种性质作为输入特征,将Cdl值作为目标值。

选择了0,1编码方法对数据进行编码,提高模型预测精度。数据被随机分为训练集和测试集,比例为8:2。使用Pytorch和Scikit-Learn软件包对14种ML算法进行软件操作,通过十倍交叉验证的网格搜索来确定超参数。采用决定系数(R2)和均方误差(MSE)两个指标进行了评估,反映模型的准确性。在实验验证中采用水热法进行实验,通过扫描电子显微镜(SEM,Hitachi SU8010)对样品的元素和形态进行了表征。应用能谱仪(EDS)对元素图谱图像进行了表征。使用三电极CHI 660 E电化学工作站在1M KOH电解质中进行电化学分析。


结果与讨论

表面积(Cdl或ECSA)确保了底物的活性位点和反应物之间的反应。因此,期望从有效的催化剂获得高的Cdl

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值