双电子氧还原反应中高性能单原子电催化剂的机器学习筛选

9a7aebd77db9af59c3608e76b941ffdd.jpeg 

研究背景

电催化因其简单、方便、环境友好,已成为高能耗和污染的传统蒽醌制备过氧化氢的最有前途的替代品之一。然而,氧还原反应(ORR)通过2e-路径生成过氧化氢是4e-ORR生成水的竞争途径。因此,鉴定一种具有2e-ORR高选择性和活性的电催化剂至关重要。太原理工大学刘吉明和简选等人收集了149种单原子催化剂(SACs)的O*吸附自由能(ΔG (O*)),利用文献中的密度泛函理论(DFT)计算31种SACs的极限电势(UL),建立了5种机器学习(ML)模型。证实ML的预测高选择性、高活性电催化剂材料性能的方法为发现和设计更有价值的SACs催化剂提供了一种高效、快速、低成本的方法。

计算方法 

理论计算:自旋极化DFT计算使用VASP代码进行,平面波截止能量设置为400 eV。通过投影仪增广波(PAW)方法,利用广义梯度近似(GGA)中的PBE泛函来计算电子交换-相关相互作用,使用Monkhorst-Pack k点网格设置为3×3×1,对所有DFT计算进行采样。真空空间在二维层的垂直方向上设置为至少15Å,以消除原子周期图像之间的人工相互作用。将原子的最大力设置为0.02 eV/ Å,自洽场总能量收敛准则设置为10-5 eV。 

机器学习:使用了五种算法对模型进行训练:随机森林(RF)、梯度增强决策树(GBDT)、线性回归(LR)、神经网络(NN)和k-最近邻(KNN)。评价标准为均方误差(MSE)和决定系数(R2)。通过对训练结果进行评分,确定通过射频训练得到的模型为最佳模型。我们对RF的各种超参数进行网格搜索和交叉验证,在避免过拟合的情况下获得最佳参数。利用RF和树数预测无吸附能(ΔG (O*))的模型的最大深度设为80。其他使用RF的必要参数设置如下:预测ΔG (O*)的模型步长和最大深度分别为0.1和7;最大迭代次数为100次;次抽样比为0.7;理论极限电位(UL)模型最大深度为80;树数为250。将数据集分为训练集和验证集进行数据预处理。根据训练和测试分数,将用于预测ΔG (O*)和UL的模型的测试集比率分别设置为0.8和0.9。用ML选择具有高选择性和高活性的SACs,用DFT计算筛选出的两种材料的活性,以确定ML的适用性。 

结果与分析 

本研究选择了7种(类似)石墨烯支撑结构:(1)单缺陷石墨烯(M@

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值