小极化子构型空间:DFT+机器学习

759 篇文章 23 订阅
21 篇文章 0 订阅

极化子缺陷在材料中普遍存在,在载流子迁移、电荷转移和表面反应等许多过程中发挥着重要作用。作为一类准粒子,极化子一直是人们的研究热点,同时也对物理、化学和材料等不同学科产生了深远的影响。其中,小极化子的波函数在空间上被限制在缺陷周围的几个埃尺寸内,它可以在材料中迁移形成不同的空间分布,这对材料的性质和功能将有很大影响。因此,预测极化子构型是正确解释实验和预测材料行为的关键。目前,针对极化子构型的研究主要依赖于密度泛函理论(DFT)的第一性原理、分子动力学模拟或者手动选择极化子构型,但都存在自身缺陷。例如,第一性原理计算需要采用大型超晶胞来减弱极化子周期映像带来的相互作用,使缺陷引起的极化子建模变得复杂,且对计算资源的要求非常高,从而阻碍了对巨大构型空间的有效探索。

 

c683965b707ba9396213a7577668ee43.jpeg

Fig. 1 Schematic representation of the ML model.

 

来自奥地利维也纳大学物理学院和计算材料科学中心的Cesare Franchini教授领导的团队提出了一种机器学习(ML)方法,来加速搜索和确定基态极化子的构型。他们将ML模型在DFT生成的极化子构型数据库上进行训练,通过设计描述符,对极化子和带电点缺陷之间的相互作用进行建模。作者将这种DFT+ML的研究策略应用到了2个材料系统,即还原的金红石TiO2(110)和Nb掺杂的SrTiO3(001)。结果表明,该策略可以正确识别任意载流子密度的基态极化子构型,且该方法不仅能够识别具有静态掺杂/空位的极化子构型,还可以进一步扩展到其他类型、其他材料的缺陷。该方法对于超胞具有任意可拓展性,能够实现大尺度模拟计算。相关论文近期发布于npj Computational Materials 8: 125 (2022)。

 

8692c4b90a35ebabbb1e2fd872649c52.jpeg

Fig. 2 Results of methodology when applied to TiO2(110).


Editorial Summary

Small polaron configurational space: DFT+ Machine learning

Polaron defects are ubiquitous in materials and play an important role in many processes involving carrier mobility, charge transfer and surface reactivity. As a type of quasiparticle, polarons represent an exciting field of research with profound impact in different disciplines ranging from physics to chemistry and material science. Specifically, small polarons, whose wave function is spatially confined within a few Å around their trapping site, can travel through the material forming different spatial distributions (polaron configurations) that have a strong impact on the properties and functionality of the material. Predicting favorable polaron configurations is key to correctly interpret experimental measurements and predict the behaviors of materials. Current research on polaron configurations mainly rely on density function theory (DFT) based first-principles calculations, molecular dynamics (MD) and manual selection, but they all have the intrinsic drawbacks. For instance, the DFT modelling of defects-induced polarons is complicated by the need to adopt large supercells in order to attenuate artificial interactions between periodic images of the polaron, which hampers an efficient exploration of the huge configurational space and makes the calculations computationally very demanding. 

4203806b014d088d95a08c6c7cae9588.jpeg

Fig. 3 Collection of results when applying the methodology to SrTiO3(001).


A team led by Prof. Cesare Franchini from the Faculty of Physics and Center for Computational Materials Science, University of Vienna, Austria, proposed a machine-learning (ML) accelerated search that determines the ground state polaronic configuration. They trained the ML model on databases of polaron configurations generated by DFT, and designed descriptors modelling the interactions among polarons and charged point defects. The proposed DFT+ML strategy was applied to two prototypical polaronic materials considering different types of doping: the oxygen-defective rutile TiO2(110) surface and the Nb-doped perovskite SrTiO3(001) surface. Results showed that the ML-aided strategy correctly identifies the ground-state polaron configuration for arbitrary carrier density, and the model can be applied to the identification of polaron configurations with static dopant/vacancy patterns, which can be further extended to consider optimized configurations with mobile point defects considering other type of defects and other materials. This approach has the arbitrary scalability with respect to the supercell size, enabling access to large scale simulations.This article was recently published in npj Computational Materials 8,: 125 (2022).


原文Abstract及其翻译

Machine learning for exploring small polaron configurational space (用于探索小极化子构型空间的机器学习)

Viktor C. Birschitzky, Florian Ellinger, Ulrike Diebold, Michele Reticcioli & Cesare Franchini 

Abstract Polaron defects are ubiquitous in materials and play an important role in many processes involving carrier mobility, charge transfer and surface reactivity. Determining small polarons’ spatial distributions is essential to understand materials properties and functionalities. However, the required exploration of the configurational space is computationally demanding when using first principles methods. Here, we propose a machine-learning (ML) accelerated search that determines the ground state polaronic configuration. The ML model is trained on databases of polaron configurations generated by density functional theory (DFT) via molecular dynamics or random sampling. To establish a mapping between configurations and their stability, we designed descriptors modelling the interactions among polarons and charged point defects. We used the DFT+ML protocol to explore the polaron configurational space for two surface-systems, reduced rutile TiO2(110) and Nb-doped SrTiO3(001). The ML-aided search proposes additional polaronic configurations and can be utilized to determine optimal polaron distributions at any charge concentration.

摘要 极化子缺陷在材料中普遍存在,并在载流子迁移、电荷转移和表面反应等许多过程中发挥着重要作用。确定小极化子的空间分布对于理解材料特性和功能至关重要。然而,当使用第一性原理方法时,构型空间的探索要求很大的计算资源。在本文中,我们提出了一种机器学习(ML)加速搜索来确定基态极化子构型的方法。ML模型在密度泛函理论(DFT)生成的极化子构型数据库上进行训练,DFT通过分子动力学或随机采样实现。为了建立起构型与稳定性之间的映射,我们设计了描述符,用来对极化子和带电点缺陷之间的相互作用进行建模。我们使用DFT+ML的方法,探索了两种表面系统的极化子构型空间,即还原的金红石TiO2(110)和Nb掺杂的SrTiO3(001)。ML辅助搜索提出了额外的极化子构型,可用于确定任何电荷浓度下的最佳极化子分布。

 

  • 7
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
水资源是人类社会的宝贵财富,在生活、工农业生产中是不可缺少的。随着世界人口的增长及工农业生产的发展,需水量也在日益增长,水已经变得比以往任何时候都要珍贵。但是,由于人类的生产和生活,导致水体的污染,水质恶化,使有限的水资源更加紧张。长期以来,油类物质(石油类物质和动植物油)一直是水和土壤中的重要污染源。它不仅对人的身体健康带来极大危害,而且使水质恶化,严重破坏水体生态平衡。因此各国都加强了油类物质对水体和土壤的污染的治理。对于水中油含量的检测,我国处于落后阶段,与国际先进水平存在差距,所以难以满足当今技术水平的要求。为了取得具有代表性的正确数据,使分析数据具有与现代测试技术水平相应的准确性和先进性,不断提高分析成果的可比性和应用效果,检测的方法和仪器是非常重要的。只有保证了这两方面才能保证快速和准确地测量出水中油类污染物含量,以达到保护和治理水污染的目的。开展水中油污染检测方法、技术和检测设备的研究,是提高水污染检测的一条重要措施。通过本课题的研究,探索出一套适合我国国情的水质污染现场检测技术和检测设备,具有广泛的应用前景和科学研究价值。 本课题针对我国水体的油污染,探索一套检测油污染的可行方案和方法,利用非分散红外光度法技术,开发研制具有自主知识产权的适合国情的适于野外便携式的测油仪。利用此仪器,可以检测出被测水样中亚甲基、甲基物质和动植物油脂的污染物含量,为我国众多的环境检测站点监测水体的油污染状况提供依据。
### 内容概要 《计算机试卷1》是一份综合性的计算机基础和应用测试卷,涵盖了计算机硬件、软件、操作系统、网络、多媒体技术等多个领域的知识点。试卷包括单选题和操作应用两大类,单选题部分测试学生对计算机基础知识的掌握,操作应用部分则评估学生对计算机应用软件的实际操作能力。 ### 适用人群 本试卷适用于: - 计算机专业或信息技术相关专业的学生,用于课程学习或考试复习。 - 准备计算机等级考试或职业资格认证的人士,作为实战演练材料。 - 对计算机操作有兴趣的自学者,用于提升个人计算机应用技能。 - 计算机基础教育工作者,作为教学资源或出题参考。 ### 使用场景及目标 1. **学习评估**:作为学校或教育机构对学生计算机基础知识和应用技能的评估工具。 2. **自学测试**:供个人自学者检验自己对计算机知识的掌握程度和操作熟练度。 3. **职业发展**:帮助职场人士通过实际操作练习,提升计算机应用能力,增强工作竞争力。 4. **教学资源**:教师可以用于课堂教学,作为教学内容的补充或学生的课后练习。 5. **竞赛准备**:适合准备计算机相关竞赛的学生,作为强化训练和技能检测的材料。 试卷的目标是通过系统性的题目设计,帮助学生全面复习和巩固计算机基础知识,同时通过实际操作题目,提高学生解决实际问题的能力。通过本试卷的学习与练习,学生将能够更加深入地理解计算机的工作原理,掌握常用软件的使用方法,为未来的学术或职业生涯打下坚实的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值