研究背景
基于电子转移(ET)的氧化还原电位(Ox+ne−→Red)是各种电化学能量转换设备的基本原理之一,它决定了氧化还原能级相对于金属材料中费米能级的位置(或半导体和绝缘体材料的价带最大值(VBM)和导带最小值(CBM))。此外,氧化还原电位还能确定溶液中离子和分子的稳定窗口,即特定离子或分子可发生电化学反应的电压范围。然而,想要对氧化还原电位实现精确的第一性原理(FP)预测,就必须平衡杂化函数高昂的计算成本和近似求解(连续介质溶解模型和QM/MM模型)导致的误差。
近期,日本株式会社丰田中央研究所Ryosuke Jinnouchi等人出了一种结合第一性原理计算和机器学习的方法,从机器学习力场到半局域泛函,再到杂化泛函的热力学积分,最终利用Δ-机器学习(Δ-ML)逐步完善电子转移自由能的计算,在仅使用25%杂化函数(PBE0)的情况下,成功预测实验报道的Fe3+/Fe2+、Cu2+/Cu+、Ag2+/Ag+的氧化还原电位(三种材料分别代表较大、较小的电位和复杂的配位环境)。
研究亮点