【机器学习+材料】Nat. Commun.:采用活性基序的机器学习和数据驱动方法挖掘二氧化碳还原电催化剂

142 篇文章 1 订阅
66 篇文章 5 订阅

4918052b851e43df2e69534795ac9808.jpeg

a5139c5e6138ac2a16a54c7636e7005e.jpeg

研究背景

化石燃料燃烧和工业生产制造导致全球二氧化碳排放量迅速增加,为了降低大气中CO2的浓度,电化学二氧化碳还原反应(CO2RR)是一种减少二氧化碳排放的重要方法。因此,发现有前途的CO2RR电催化剂至关重要。机器学习(ML)已被大量用于筛选催化剂,然而,目前的机器学习方法仅限于在狭小的化学空间探索,存在一定的局限性。因此,韩国西江大学Seoin Back和上海交通大学蒋昆等人通过ML模型和CO2RR选择性分布图结合建立了高通量筛选方法,并实现对465种金属CO2RR催化剂的筛选,研究发现Cu-Ga和Cu-Pd合金具有优异的性能,并通过实验方法进行了验证。

计算和机器学习方法

本文使用VASP软件的投影缀加平面波(PAW)赝势方法,并在广义梯度近似中采用GGA-RPBE泛函进行DFT计算。在几何优化方面,将能量收敛标准设置为10-5eV,直到每个原子上的力小于0.03 eV/Å,将截断能值设置为500 eV,将k点网格设置为1×2×1。为了预测吸附物(CO*, H*, OH*)各种活性物质上的结合能,本文使用了DSTAR (DFT & Structure-free Active Motif Based Representation)方法将活性基序(一段典型的序列或者一个结构,一般称为基序,活性基序便是不同活性物种在催化剂的吸附构型)转换为机器学习的输入,并应用scikit-learn中的StandardScale对输入进行标准化。本文选用梯度增强回归和XGBoost回归预测CO*/H*和OH*的结合能,通过贝叶斯优化确定各模型的超参数。对于ML模型训练,本文选用80%数据作为训练集和20%的数据作为测试集,并进行五折交叉验证。

结果与讨论

具体工作流程如图1(a)所示,本文选择了一个简单的DSTAR方法,该方法能通过扩展化学空间来实现HTVS(高通量虚拟筛选)。本文在GASpy数据集中收集了表面具有活性基序的5634(408)个双金属(单金属)CO*数据,其中包含89种晶体结构。其中,活性基序是由30种元素组成的30种单金属和435种双金属材料。通过DSTAR方法将GASpy数据集从1089个增加到279690个。为了简化训练数据,本文只选择了纯金属和二元合金。因此,总共生成了2463030个活性基序,并使用ML模型预测了它们的ΔECO*、ΔEOH*和ΔEH*。图1b展示了DFT计算和ML预测的结合能奇偶校验图,其中,ΔECO*、ΔEOH*和ΔEH*的测试MAE分别为0.119、0.227和0.107eV。

7739661694ad2dea2eedaf94320ce90c.jpeg

图1 ML模型的高通量筛选原理和性能图

通过查阅文献,团队发现CO2RR各种中间体的结合能可以通过ΔECO*和ΔEOH*的比例关系体现,进而可以通过建立热力学边界条件实现对预测CO2RR产物选择性分布图的构建。虽然C1产物可能有多种反应途径,但本文注重于7个反应和6个热力学边界条件中4种主要产物,即甲酸盐、CO、C1+(>2e−)和H2。本文将三个结合能描述符(ΔECO*、ΔEH*和ΔEOH*分别作为x、y和z轴)以三维选择图形式呈现(如图2)。随后将预测结果与实验结果进行比较,验证了构建的选择性图谱,并计算了纯金属的面心立方(FCC)(111)和(211)面上的三个结合能,并将其绘制在选择性图上(如图2)。随后对四类典型的催化剂(后过渡金属、铸币金属、对甲酸盐具有嵌入性的p区元素、Cu)进行预测分析,证实了3D选择性图具有捕捉催化剂的特性。

362cec41be524e7022b07fe6eb5a69b6.jpeg

图2 3D选择性图

图2中的3D选择性图可以实现对CO2RR产物的选择性,因此本文使用该图预测二元合金催化剂的选择性和活性,采用机器学习预测了ΔECO*、ΔEOH*和ΔEH*,如图3a。本文根据图2选择性图上活性基序的位置,使用边界条件确定了预期产物,并导出吉布斯自由能图,计算了预期产物的活性。为了解决考虑每个活性基序的贡献和ML模型的预测误差,在这项工作中引入了一个新的指标“生产率”。生产率是活性和选择性的定量关系,其通过活性基序位于误差范围内的概率来判别ML预测误差,与对CO2RR的HTVS研究不同。图3b显示了U=−1.4 VRHE条件下,30种纯金属和435种二元合金催化剂的四种CO2RR中间体的生产率。生产率热图取决于应用潜力,可以证明活性和选择性存在依赖性。图4显示了在U=−1.0 VRHE时的生产率热图,随着施加更多的负电位,Cu的选择性从甲酸盐转移到C1+。同时,Ag在施加电压为−1.3 VRHE时对甲酸盐具有选择性(图5),主要产生CO和H2,可能由于动力学和局部场效应。此外,选择性图预测Ga和Zn对甲酸盐具有选择性,但在实验中没有证明。

56b75a9352cdedae37d26fe04036b7ae.jpeg

图3 预测方法和结果可视化

e23597821a1139a365f9e6edf3522780.jpeg

图4 生产率热图可视化;在U=−1.0 VRHE下甲酸酯、CO、C1+、H2的热图可视化

ed195957af43b6c428a9d01f1db48bdc.jpeg

图5 ML预测Ag的选择性

由于本工作中采用DSTAR机器学习模型,可以提取活性基序的成分和配位数(CN)信息,以研究它们对生产率的影响。通过图6a和b发现随着Al含量和CN含量的降低,C1+生产率增加,这表明可以通过控制催化剂的组成或形态可以调节生产率。虽然Cu-Al合金对C1+产物是选择性的,但当不采用任何条件时,其C1+生产率低于纯Cu(如图6c,d)。然而,当低Al含量和低CN的条件时,其生产率比纯Cu显著提高(如图6d)。这表明尽管随着Cu-Al合金中Al含量的降低,C1+生产率有所提高(图6a),但向Cu中添加Al仍然比不添加Al更有利于C1+的生产。进一步说明,ML辅助HTVS策略微调催化剂的组成、尺寸和形状,能够为催化剂实现最大目标生产率提供了重要指导。

25e4f9be1271c6c435df3a59548b4db9.jpeg

图6 组成和成分的分析

为了评估HTVS方法的可靠性和可发现性,本文关注了催化剂的两个方面:前景和新颖性。作为一种有前景的催化剂,本文发现Cu-Pd电催化剂具有最高的C1+生产率。此外,在−1.4 VRHE下,Cu-Ga电催化剂的甲酸盐生产率排名前10%。接下来,本文将讨论ML预测结果,并对ML辅助的HTVS策略进行实验验证。如图7a所示,ML预测的Cu-Pd和Cu-Ga电催化剂的生产率表明C1+和甲酸盐的生产率在负电位下占主导地位。然而,当Cu-Ga和Cu-Pd电催化剂的C1+生产率随着电位向负方向增加而增加,但当达到最大值时,Cu-Ga电催化剂的甲酸盐生产率在-1.4VRHE后单调下降。这可能由于C1+选择性区域的扩展引起的。在−1.4 VRHE下,通过对CN(图7b)和成分(图7c)的分析,说明了在CN含量低或Cu含量中等时,Cu-Pd电催化剂的C1+生产率增加;在CN含量高和Cu含量低时,甲酸盐生产率提高。

d90be1a228d9f141215fec4d25872215.jpeg

图7 Cu-Pd和Cu-Ga的预测结果

ff702e854853c5010aa2df79f562468a.jpeg

图8 Cu-Pd电催化剂(a)在CO2电解2小时之前和(b)之后的SEM图像

本文通过实验验证了Cu-Pd电催化剂C1+生产率。图8为在CO2RR电解前后Cu-Pd电催化剂的SEM图像,通过对比发现Cu-Pd电极由密集堆积的纳米颗粒组成,与裸Cu相比,提高了表面粗糙度。从TOF-SIMS中提取了Cu-Pd电催化剂的深度剖面,并重新构建的3D图,如图9a所示。在0.5°的入射角下进行X射线衍射,进一步探测Cu-Pd电催化剂的晶体结构。然后分析了在-0.75至-1.15VRHE电压下,Cu-Pd电催化剂与Cu的电化学CO2RR性能,发现其具有更高的电流密度(如图9b),这与表面粗糙度的增加有关。此外,如图9c所示,在Cu-Pd电催化剂上发现了H2-FE,表明CO2RR对电流密度起到增强作用,而不是HER。C2H4在–1.15 V时显示出32.3%FE的最高选择性(如图9d),约为裸铜的3.6倍。此外,图9e显示,由CO2RR转化为C1+产物比例从-0.75 V时的0.29迅速增加到-0.85 V时的0.84,并最终在–1.15 V时达到0.99,与裸铜相比,在Cu-Pd电催化剂上的C1+选择性提高了2.3倍,成功验证了C1+生产率的理论预测。

b332226d7076576978068bd959338f72.jpeg

图9 Cu-Pd的实验结果

结论与展望

本文研究了ML辅助HTVS的策略,预测了优势产物及465个元素组合的活性和选择性,并筛选出最佳的元素组合,为研究人员提供催化剂化学计量和形态的指导。本文的开发策略为加速发现具有高活性和高选择性的CO2RR催化剂提供了重要的指导意义。

文献信息

Mok D H, Li H, Zhang G, et al. Data-driven discovery of electrocatalysts for CO2 reduction using active motifs-based machine learning[J]. Nature Communications, 2023, 14(1): 7303.

ht-tps://doi.org/10.1038/s41467-023-43118-0

  • 9
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值