动手学ROS2-Foxy

动手学ROS2-Foxy

各位同学大家好,我是小鱼,很高兴能和你一起学习机器人,学习ROS2。

1.为什么要学习ROS2?

随着智能制造2025的到来,国内机器人行业也随之兴起,越来越多的小伙伴接触并学习了ROS,国内关于ROS的教程也越来越多。

ROS2作为第二代机器人操作系统,比ROS更加的强大,有一些在ROS中不好实现或者无法实现的功能,在ROS2中就可以找到方法。

虽然ROS2很强大,但国内相关教程较少,影响大家对ROS2的了解和学习。所以本课程从基础开始讲起,带大家一起动手学ROS2。

本教程文字版课程还在随着ROS2的更新,不断的更新中,大家可以关注小鱼个人的微信公众号《鱼香ROS》,加入技术交流群第一时间获取更新通知

2.学了本课程能够做什么?

本课程为机器人学习实践基础课程,可以为您进一步学习机器人技术奠定基础,比如:

在本课程中你可以收获以下知识:

  • 掌握ROS2的概念,了解ROS2和ROS1之间的异同

  • 掌握安装Ubuntu系统和ROS2

  • 掌握ROS2节点和工作空间概念及编译工具的使用

  • 学会编写ROS2的C++和Python节点

  • 掌握ROS2话题和服务通信机制以及Python和C++实现

  • 掌握ROS2参数通信机制并了解Action通信机制

  • 掌握ROS2常用工具如RQT、ROS2bag、ROS2launch等

3.本教程适合学习对象有哪些?

本教程会从最基础的部分开始讲起,章节中会穿插扩展阅读部分,帮助大家学习掌握,本教程主要适合人群有:

  • 机器人相关的大学生和的研究生们

  • 已有ROS基础想要了解ROS2的在职工程师

  • 想要转行从事机器人的小伙伴

  • 其他想要学习了解机器人技术的同学们

3.1 没有机器人基础可以学习吗?

没有任何问题,即使你不是机器人相关专业也没事,小鱼会在教程中给大家讲解。

3.2 没有编程基础可以学习吗?

本教程使用Python和C++编程语言实现,大家只需要掌握其中之一即可。

如果没有任何编程基础的小伙伴,可以简单的学习一下Python语言,两三天就可以上岗了。

4.课程介绍

4.1 课程规划

4.1.1 一期课程

本教程一期为1到6章为基础环节,主要介绍了ROS2的基本使用

  • 第 1 章 ROS2介绍

  • 第 2 章 准备环境与安装ROS2

  • 第 3 章 ROS2基础知识

  • 第 4 章 ROS2通信机制(话题与服务)

  • 第 5 章 ROS2通信机制(参数与Action)

  • 第 6 章 ROS2工具介绍

4.1.2 二期课程安排

机器人进阶环节

  • 第 7 章 机器人基础

  • 第 8 章 机器人建模

  • 第 9 章 机器人仿真

10到11章为实战环节

  • 第 10 章 综合案例一:SLAM导航仿真

  • 第 11 章 综合案例二:MoveIt机械臂建模

4.2 软件版本

  • ROS2版本:foxy

  • 系统版本:Ubuntu20.04

5.关于小鱼

小鱼目前主要在做基于ROS的复合机器人相关的工作,坐标深圳,有时间的小伙伴周末一起来喝个茶。

同时这也是小鱼第一次录制系列性的课程,有不足之处还请大家多多包涵!

因为制作时间仓促和作者个人能力有限,教程之中难免有错误之处,如果你有发现请联系小鱼,小鱼将第一时间修正。

最后欢迎关注小鱼的微信公众号《鱼香ROS》,和小鱼一起学习ROS2。公众号下方有小鱼的个人微信和机器人技术交流群,有问题可以联系。

参考资料

### ROS2中的SLAM教程与资源 #### 了解ROS2 SLAM的基础概念 在机器人操作系统(ROS)中,同时定位与地图构建(SLAM)是一项关键技术,它使移动机器人能够在未知环境中创建地图并确定自己的位置。对于ROS2而言,这一过程同样重要,并且随着版本迭代而不断改进[^1]。 #### 推荐的学习资料 针对希望深入学习ROS2下SLAM技术的人士,《Programming for Robotics》课程提供了丰富的理论基础以及实践指导,该课程由苏黎世联邦理工学院提供,涵盖了从基础知识到高级应用的内容,在此可以找到关于如何设置环境、编写节点等方面的具体说明[^2]。 #### 实际操作指南 为了帮助初学者快速上手,过去三年在中国举办的ROS暑期学校特别设计了一系列面向不同层次学员的教学活动。这些活动中包含了详细的SLAM案例分析及动手实验环节,超过一千名参与者从中受益匪浅。以下是基于此类培训所整理的一个简单示例: ```bash # 安装必要的依赖包 sudo apt-get install ros-foxy-slam-toolbox ``` 启动模拟器后加载预定义的地图文件: ```xml <launch> <!-- 启动Gazebo仿真世界 --> <include file="$(find gazebo_ros)/launch/empty_world.launch"/> <!-- 加载机器人模型 --> <param name="robot_description" command="$(find xacro)/xacro '$(find turtlebot3_description)/urdf/turtlebot3_burger.urdf.xacro'" /> </launch> ``` 配置`slam_toolbox`参数以适应特定应用场景的需求: ```yaml use_sim_time: true map_frame : map odom_frame : odom base_frame : base_link scan_topic : /scan update_frequency : 5.0 publish_frequency : 2.0 resolution : 0.05 ... ``` 通过上述命令行和配置文件的操作,能够实现基本的室内环境下激光雷达数据驱动下的建图功能。更多细节可参阅官方文档或其他开源项目实例来进一步探索更复杂的特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值