【ROS2机器人入门到实战】齐次坐标变换

5.齐次坐标变换

写在前面

  1. 当前平台文章汇总地址:ROS2机器人从入门到实战
  2. 获取完整教程及配套资料代码,请关注公众号<鱼香ROS>获取
  3. 教程配套机器人开发平台:两驱版| 四驱版
  4. 为方便交流,搭建了机器人技术问答社区:地址 fishros.org.cn

前面几节中,小鱼带你一起学习了使用TF进行坐标的变换,也带你通过旋转和平移求解了坐标的变换关系,但计算的过程中旋转和平移是分开计算的,那有没有一种方法,可以让旋转矩阵和平移向量合并到同一个矩阵里呢?

答案是有的,我们可以将 3 ∗ 3 3*3 33的旋转矩阵和 3 ∗ 1 3*1 31的平移矩阵进行组合,并添加一行(0,0,0,1)使其变成一个 4 ∗ 4 4*4 44的方阵,其组合方式如下:

有旋转矩阵
R = [ r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33 ] (旋转矩阵) R = \begin{bmatrix}{r_{11}}&{r_{12}}&{r_{13}}\\{r_{21}}&{r_{22}}&{r_{23}}\\{r_{31}}&{r_{32}}&{r_{33}}\\\end{bmatrix} \tag{旋转矩阵} R= r11r21r31r12r22r32r13r23r33 (旋转矩阵)
平移矩阵
P = [ x y z ] (平移矩阵) P= \begin{bmatrix}{x}\\{y}\\{z}\\\end{bmatrix} \tag{平移矩阵} P= xyz (平移矩阵)

合并成齐次变换矩阵
T = [ r 11 r 12 r 13 x r 21 r 22 r 23 y r 31 r 32 r 33 z 0 0 0 1 ] (齐次矩阵) T = \begin{bmatrix}{r_{11}}&{r_{12}}&{r_{13}}&{x} \\{r_{21}}&{r_{22}}&{r_{23}}&{y} \\{r_{31}}&{r_{32}}&{r_{33}}&{z} \\0&0&0&1 \\\end{bmatrix} \tag{齐次矩阵} T= r11r21r310r12r22r320r13r23r330xyz1 (齐次矩阵)

为什么要这样写,我们可以简单的推导一下,矩阵是支持分块运算的,我们将上面的矩阵进行分块
T = [ R P 0 1 ] (齐次矩阵) T = \begin{bmatrix}{R}&{P} \\0&1\\\end{bmatrix} \tag{齐次矩阵} T=[R0P1](齐次矩阵)
假设 B A T ^A_BT BAT表示B坐标系到A坐标系的齐次变换,B坐标系下的点C坐标为 C B P ^B_CP CBP,求C在A坐标系下的坐标 C A P ^A_CP CAP

我们将 B A T ^A_BT BAT C B P ^B_CP CBP上,可得
C A P = [ B A R B A P 0 1 ] [ C B P 1 ] = B A R C B P + B A P ^A_CP= \begin{bmatrix}{^A_BR}&{^A_BP}\\0&1\\\end{bmatrix} \begin{bmatrix}{^B_CP}\\1\\\end{bmatrix} = {^A_BR}{^B_CP}+^A_BP CAP=[BAR0BAP1][CBP1]=BARCBP+BAP
根据前面学习的平移+旋转复合坐标变换公式,正确的结果如下
C A P = B A R C B P + B A P ^A_CP = {^A_BR}{^B_CP}+^A_BP CAP=BARCBP+BAP
你会发现,两者最终结果完全相同,也就是说,我们的平移加旋转复合变换,可以直接用齐次变换矩阵代替。

1.齐次变换矩阵特性

接着我们来探索一下齐次变换矩阵的一些特性

2.1.齐次变换矩阵的符号表示

一般使用H或者T来表示齐次变换矩阵,矩阵的左上角标明参考坐标系,矩阵左下角标明目标坐标系,比如 B A T ^A_BT BAT表示B坐标系到A坐标系的变换关系(平移+旋转)

2.2.齐次变换矩阵的逆的几何含义

就像矩阵的逆一样,齐次变换矩阵也有逆,其逆也有对应的几何含义,比如

比如 B A T ^A_BT BAT表示B坐标系到A坐标系的变换关系

那么

B A T ^A_BT BAT的逆 B A T − 1 = A B T ^A_BT^{-1}=^B_AT BAT1=ABT表示A坐标系到B坐标系的变换关系

2.3.齐次变换矩阵的乘法的几何含义

3.3.1齐次矩阵与平移向量相乘

齐次矩阵与平移向量相乘,即可求出某个向量在另一坐标系下的表示,上面例子中即是如此。

3.3.2齐次矩阵与齐次矩阵相乘

齐次矩阵与齐次矩阵相乘,可以转换不同坐标系之间的关系,比如:
B A T C B T = C A T ^A_BT^B_CT=^A_CT BATCBT=CAT
比如当我们有一个六自由度的机械臂,知道两两相邻关节之间的关系,那么就可以通过其次矩阵相乘的方法求出,关节6在关节0下的位置和姿态:
1 0 T 2 1 T 3 2 T 4 3 T 5 4 T 6 5 T = 6 0 T ^0_1T^1_2T^2_3T^3_4T^4_5T^5_6T=^0_6T 10T21T32T43T54T65T=60T

3.练习

练习小鱼放到了下一节了,毕竟不希望大家用手来算~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值