5.齐次坐标变换
写在前面
- 当前平台文章汇总地址:ROS2机器人从入门到实战
- 获取完整教程及配套资料代码,请关注公众号<鱼香ROS>获取
- 教程配套机器人开发平台:两驱版| 四驱版
- 为方便交流,搭建了机器人技术问答社区:地址 fishros.org.cn
前面几节中,小鱼带你一起学习了使用TF进行坐标的变换,也带你通过旋转和平移求解了坐标的变换关系,但计算的过程中旋转和平移是分开计算的,那有没有一种方法,可以让旋转矩阵和平移向量合并到同一个矩阵里呢?
答案是有的,我们可以将 3 ∗ 3 3*3 3∗3的旋转矩阵和 3 ∗ 1 3*1 3∗1的平移矩阵进行组合,并添加一行(0,0,0,1)使其变成一个 4 ∗ 4 4*4 4∗4的方阵,其组合方式如下:
有旋转矩阵
R
=
[
r
11
r
12
r
13
r
21
r
22
r
23
r
31
r
32
r
33
]
(旋转矩阵)
R = \begin{bmatrix}{r_{11}}&{r_{12}}&{r_{13}}\\{r_{21}}&{r_{22}}&{r_{23}}\\{r_{31}}&{r_{32}}&{r_{33}}\\\end{bmatrix} \tag{旋转矩阵}
R=
r11r21r31r12r22r32r13r23r33
(旋转矩阵)
平移矩阵
P
=
[
x
y
z
]
(平移矩阵)
P= \begin{bmatrix}{x}\\{y}\\{z}\\\end{bmatrix} \tag{平移矩阵}
P=
xyz
(平移矩阵)
合并成齐次变换矩阵
T
=
[
r
11
r
12
r
13
x
r
21
r
22
r
23
y
r
31
r
32
r
33
z
0
0
0
1
]
(齐次矩阵)
T = \begin{bmatrix}{r_{11}}&{r_{12}}&{r_{13}}&{x} \\{r_{21}}&{r_{22}}&{r_{23}}&{y} \\{r_{31}}&{r_{32}}&{r_{33}}&{z} \\0&0&0&1 \\\end{bmatrix} \tag{齐次矩阵}
T=
r11r21r310r12r22r320r13r23r330xyz1
(齐次矩阵)
为什么要这样写,我们可以简单的推导一下,矩阵是支持分块运算的,我们将上面的矩阵进行分块
T
=
[
R
P
0
1
]
(齐次矩阵)
T = \begin{bmatrix}{R}&{P} \\0&1\\\end{bmatrix} \tag{齐次矩阵}
T=[R0P1](齐次矩阵)
假设
B
A
T
^A_BT
BAT表示B坐标系到A坐标系的齐次变换,B坐标系下的点C坐标为
C
B
P
^B_CP
CBP,求C在A坐标系下的坐标
C
A
P
^A_CP
CAP
我们将
B
A
T
^A_BT
BAT乘
C
B
P
^B_CP
CBP上,可得
C
A
P
=
[
B
A
R
B
A
P
0
1
]
[
C
B
P
1
]
=
B
A
R
C
B
P
+
B
A
P
^A_CP= \begin{bmatrix}{^A_BR}&{^A_BP}\\0&1\\\end{bmatrix} \begin{bmatrix}{^B_CP}\\1\\\end{bmatrix} = {^A_BR}{^B_CP}+^A_BP
CAP=[BAR0BAP1][CBP1]=BARCBP+BAP
根据前面学习的平移+旋转复合坐标变换公式,正确的结果如下
C
A
P
=
B
A
R
C
B
P
+
B
A
P
^A_CP = {^A_BR}{^B_CP}+^A_BP
CAP=BARCBP+BAP
你会发现,两者最终结果完全相同,也就是说,我们的平移加旋转复合变换,可以直接用齐次变换矩阵代替。
1.齐次变换矩阵特性
接着我们来探索一下齐次变换矩阵的一些特性
2.1.齐次变换矩阵的符号表示
一般使用H或者T来表示齐次变换矩阵,矩阵的左上角标明参考坐标系,矩阵左下角标明目标坐标系,比如 B A T ^A_BT BAT表示B坐标系到A坐标系的变换关系(平移+旋转)
2.2.齐次变换矩阵的逆的几何含义
就像矩阵的逆一样,齐次变换矩阵也有逆,其逆也有对应的几何含义,比如
比如 B A T ^A_BT BAT表示B坐标系到A坐标系的变换关系
那么
B A T ^A_BT BAT的逆 B A T − 1 = A B T ^A_BT^{-1}=^B_AT BAT−1=ABT表示A坐标系到B坐标系的变换关系
2.3.齐次变换矩阵的乘法的几何含义
3.3.1齐次矩阵与平移向量相乘
齐次矩阵与平移向量相乘,即可求出某个向量在另一坐标系下的表示,上面例子中即是如此。
3.3.2齐次矩阵与齐次矩阵相乘
齐次矩阵与齐次矩阵相乘,可以转换不同坐标系之间的关系,比如:
B
A
T
C
B
T
=
C
A
T
^A_BT^B_CT=^A_CT
BATCBT=CAT
比如当我们有一个六自由度的机械臂,知道两两相邻关节之间的关系,那么就可以通过其次矩阵相乘的方法求出,关节6在关节0下的位置和姿态:
1
0
T
2
1
T
3
2
T
4
3
T
5
4
T
6
5
T
=
6
0
T
^0_1T^1_2T^2_3T^3_4T^4_5T^5_6T=^0_6T
10T21T32T43T54T65T=60T
3.练习
练习小鱼放到了下一节了,毕竟不希望大家用手来算~