为什么说神经网络是黑箱子模型,我刚刚有了新的感悟。

为什么说神经网络是黑箱子模型,我刚刚有了新的感悟。

 

深度神经网络是自动提取特征,不同于以往的人工提取特征。

人工提取特征他是知道为什么提取这个特征的,而神经网络,则是通过训练去尽可能贴近训练集,它确实也是做到了,但是你说不出为什么,它为什么是这样弄,说不出它的权重为什么是这样,所以你也没法很好地手动去改去让它变得更好,它是自动提取特征你也说不清楚它提取了哪些特征。感觉更像是一种非线性洗呢,它是综合出来地效果,你没法去把它内部拆开一个个分析其内部的一部分的功能。它是一个整体的综合性的体现。

 

当然我理解也可能有误,但至少是我目前的理解。

 

但有个比如卷积神经网络它每一层都可以把图像,直到最后确实是可以提取出特征的这个怎么解释。

它这里确实解释出来了,那说深度学习不可解释是为什么呢?

 

下面的截图来自《tensorflow实战google深度学习框架》

 

 

 

 

刚刚看了这个youtube视频,把神经网络为什么是黑盒讲得很清楚,也让我弄清楚了我上面写的疑惑

https://www.youtube.com/watch?v=Yp29JqL_dd4

### 神经网络的基本概念 神经网络是一种模仿人类大脑工作的计算模型,旨在解决复杂的模式识别和预测问题。这种技术属于机器学习的一个重要分支,其学名为人工神经网络 (Artificial Neural Network, ANN)[^2]。它通过构建数学模型来模拟生物神经系统的行为,从而完成特定的任务。 #### 定义 神经网络是由一系列相互连接的节点组成的系统,这些节点被称为神经元或单元[^4]。它们被组织成不同层次,主要包括输入层、隐藏层以及输出层。每一层中的神经元接收来自前一层的数据作为输入,并将其传递给下一层。在此过程中,每个神经元会对接收到的信息应用加权求和操作并经过激活函数进行非线性变换。 --- ### 神经网络的工作原理 1. **神经元模型** 单个神经元是整个网络的基础构件。每一个神经元接受一组输入信号 \(x_1, x_2,...,x_n\) 和对应的权重 \(w_1, w_2,...,w_n\) ,然后计算加权总和 \(\sum_{i=1}^{n}(w_i * x_i)\) 。接着,该结果会被送入一个激活函数 \(f()\) 中以引入非线性特性[^3]。最终输出可表示为: ```python output = f(sum(w_i * x_i)) ``` 2. **网络结构** 神经网络通常由三层构成: - 输入层负责接收外部数据; - 隐藏层执行主要的计算任务,可能包含多个层级; - 输出层提供最终的结果或预测值。 当层数较多时,则称之为深度神经网络(Deep Neural Network),这是现代深度学习的核心组成部分之一[^1]。 3. **训练机制** 训练阶段的目标是最小化实际输出与期望目标之间的误差。这通常是借助优化算法如梯度下降法实现的,在此期间不断调整各条边上的权重直至达到满意的性能指标为止。 4. **黑箱效应** 尽管单个神经元的操作较为简单明了,但由于大规模参数的存在使得整体运作变得极其复杂难以直观解释。因此,在很多情况下,人们把成熟的神经网络视为“黑箱子”,即只知道输入什么得到什么样的输出却不清楚内部具体是如何达成这一目的的细节。 --- ### 总结 综上所述,神经网络不仅是一个强大的工具用以处理海量高维度数据集,而且它的理论依据来源于仿生科学领域内的研究成果。尽管如此,由于涉及大量变量及运算步骤的缘故,即便掌握了基本原理仍需依赖计算机辅助才能有效运行此类程序。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诗筱涵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值