
多传感器融合/状态估计
诗筱涵
自主无人机 微信公众号:诗筱涵 技术交流群:960668018 邮箱:1372740910@qq.com
展开
-
3D视觉工坊 vins fusion课程笔记
3D视觉工坊 vins fusion课程笔记怪不得有人说不用IMU的结果还准确些。原创 2021-10-06 18:49:32 · 468 阅读 · 0 评论 -
现在回看《视觉SLAM十四讲》这本书,发现其实很多问题这里 已经讲清楚了,这本书真的值得细啃啃烂。
现在回看《视觉SLAM十四讲》这本书,发现其实很多问题这里 已经讲清楚了,这本书真的值得细肯啃烂。真的可以理解到SLAM的本质,或者一些问题的本质。特别是结合上次高翔在ROS暑期的直播。卡尔曼滤波也好,非线性优化也好。。...原创 2021-08-28 14:39:01 · 446 阅读 · 0 评论 -
关于图优化
最基本的图优化就是用图模型来表达一个非线性最小二乘的优化问题 《视觉SLAM十四讲》P142G2O的全称是 Gerneral Graphic Optimization 名词就是说通用的图优化库 P141可以用G2O进行曲线拟合。位姿图的优化本质上是个最小二乘问题,优化变量为各个顶点的位姿。 P272...原创 2021-08-22 01:30:50 · 572 阅读 · 0 评论 -
vins-fusion似乎本身就是一种多传感器融合框架
今天细读这个标题才发现,就是说一个基于优化的多传感器状态估计器。https://github.com/HKUST-Aerial-Robotics/VINS-Fusion原创 2021-08-21 03:19:46 · 483 阅读 · 0 评论 -
我现在感觉他们通过轨迹展现出的GPS或者GPS融合的精度本质上和我追求定点时的精度可能是一样的,就像借助于轨迹跟踪来检验一个控制器。
我现在感觉他们通过轨迹展现出的GPS或者GPS融合的精度本质上和我追求定点时的精度可能是一样的,就像借助于轨迹跟踪来检验一个控制器。可能这样更为直观最简单的我无人机飞一条直线,对比实际的GPS数据,对吧。https://blog.csdn.net/weixin_41869763/article/details/105792692https://blog.csdn.net/sinat_16643223/article/details/119815353...原创 2021-08-20 08:48:38 · 190 阅读 · 0 评论 -
【泡泡图灵智库】基于优化的视觉惯性SLAM与GNSS紧耦合
转载自:https://mp.weixin.qq.com/s/jlkXvygaTsql1nk76HD94g【泡泡图灵智库】基于优化的视觉惯性SLAM与GNSS紧耦合原创 泡泡机器人 泡泡机器人SLAM 今天泡泡图灵智库,带你精读机器人顶级会议文章标题:Optimization-Based Visual-Inertial SLAM Tightly Coupled with Raw GNSS Measurements作者:Jinxu Liu, Wei Gao* and Zhanyi Hu转载 2021-08-20 08:41:07 · 1853 阅读 · 0 评论 -
PX4飞控导出GPS数据拟合飞行轨迹(转载)
转载自:https://blog.csdn.net/weixin_41106948/article/details/104273453PX4飞控导出GPS数据拟合飞行轨迹置顶 jones5 2020-02-12 13:40:11 收藏 17 分类专栏: PX4飞控GPS数据分析 文章标签: PX4飞控 GPS飞行轨迹拟合版权 PX4飞控GPS数据分析 专栏收录该内容0 篇文章 2 订阅订阅专栏前言:想要拟合飞行轨迹,百度了一下,高人介绍的都是什么百度地图API,无忧地图转载 2021-08-18 20:58:27 · 1575 阅读 · 0 评论 -
联邦卡尔曼滤波
https://blog.csdn.net/weixin_44020802/article/details/108968937原创 2021-08-18 11:35:02 · 611 阅读 · 0 评论 -
多传感器融合,组合导航,SLAM很多人是放一起说的或者要求的,因为它们本质技术是通的
多传感器融合,组合导航,SLAM很多人是放一起说的或者要求的,因为它们本质技术是通的以前做组合导航的人,现在做SLAM应该也能很快上手。原创 2021-08-18 02:18:55 · 729 阅读 · 0 评论 -
GPS经纬度转为本地系坐标
GPS经纬度转为本地系坐标https://blog.csdn.net/weixin_41869763/article/details/105792692。原创 2021-08-18 00:41:56 · 2599 阅读 · 1 评论 -
GPS这种精度我感觉和T265融合没什么问题啊,而且T265位置频率比GPS高,那么,我们T265作为状态 GPS作为观测,我觉得是可以的,就用卡尔曼,是可以的。因为GPS本身比较可靠了,所以不用怕,
GPS这种精度我感觉和T265融合没什么问题啊,而且T265位置频率比GPS高,那么,我们T265作为状态GPS作为观测,我觉得是可以的,就用卡尔曼,是可以的。因为GPS本身比较可靠了,所以不用怕,而且T265比IMU不牢靠得多?你说室外快速飞行的时候T265可能会飘,我觉得总比IMU要好些吧?IMU不见得在很快速运动的场景下就好了。估计得就准确了?弄清了GPS定点的原理,GPS和IMU融合的原理再来看GPS和T265的融合似乎就好一些,清晰一些。.原创 2021-08-17 20:12:47 · 685 阅读 · 0 评论 -
IMU与GPS传感器ESKF融合定位(转载)
转载自:https://blog.csdn.net/qq_36170626/article/details/108498533IMU与GPS传感器ESKF融合定位纷繁中淡定 2020-09-09 18:29:381800 收藏 40 分类专栏: 手写VIO 文章标签: slam版权IMU与GPS传感器ESKF融合定位文章目录IMU与GPS传感器ESKF融合定位 1、代码整体框架说明 2、主要函数介绍 2.1 LocalizationWrappe转载 2021-08-17 00:13:59 · 2517 阅读 · 1 评论 -
马尔科夫性 和 高斯 应该是卡尔曼滤波两个基本假设,基于这两个基本假设才可以推出卡尔曼滤波
马尔科夫性 和 高斯 应该是卡尔曼滤波两个基本假设,基于这两个基本假设才可以推出卡尔曼滤波https://blog.csdn.net/sinat_16643223/article/details/119631878《概率机器人的目录》原创 2021-08-16 09:06:31 · 563 阅读 · 0 评论 -
相当于IMU ,GPS,气压计,光流 这些都是作为观测器,起修正作用,可以建立观测方程。
相当于IMU ,GPS,气压计这些都是作为观测器,起修正作用,可以建立观测方程。视觉里程计好像也是的。视觉里程计的频率也是低于IMU的,所以我有个疑问来了,视觉里程计和IMU的融合是不是和GPS和IMU的融合比较类似?当然是基于滤波的融合,不是基于优化的话。https://blog.csdn.net/u011992534/article/details/78257684https://download.csdn.net/download/u011992534/12263504?utm_.原创 2021-08-15 11:58:59 · 1165 阅读 · 0 评论 -
关于GPS实际精度比较低,而且频率低,但是无人机GPS定点却定得和钉子一样
像高翔说的GPS精度是10m级的,对视觉SLAM基本没什么用,只能说宏观上纠正一下。确实GPS频率就10hz,但是实际飞控位置环肯定不是10hz当然飞控姿态环依靠IMU就够了。https://blog.csdn.net/u011992534/article/details/79408187?utm_medium=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai..原创 2021-08-15 10:53:31 · 3256 阅读 · 1 评论 -
【点云论文速读】基于优化的视觉惯导里程计与GPS的紧耦合的融合方案
转载自:https://mp.weixin.qq.com/s/Y-h7eto1Zc_Mkzlh653vpg【点云论文速读】基于优化的视觉惯导里程计与GPS的紧耦合的融合方案原创 dianyunPCL 点云PCL 2020-07-28点云PCL免费知识星球,点云论文速读。标题:Tightly-coupled Fusion of Global Positional Measurements in Optimization based Visual-Inertial Odometry作者:转载 2021-08-11 00:13:31 · 788 阅读 · 0 评论 -
在弄过光流,相机标定,PNP(aruco二维码定位),图优化(多传感器融合,GPS与T265融合)之后再来看《视觉SLAM十四讲》这本书就比较熟悉了,也轻松许多。
在弄过光流,相机标定,PNP(aruco二维码定位),图优化(多传感器融合,GPS与T265融合)之后再来看《视觉SLAM十四讲》这本书就比较熟悉了,也轻松许多。。...原创 2021-08-10 14:52:10 · 824 阅读 · 0 评论 -
现在知道这个图什么意思了,其实非常现实,就是比如你跑vins的时候,显示的三维中的特征点和相机轨迹上的点!理解了这个图再去看图优化就好些了。
现在知道这个图什么意思了,其实非常现实,就是比如你跑vins的时候,显示的三维中的特征点和相机轨迹上的点!!!!!圆形就是特征点的三维坐标,三角形就是相机轨迹点的三维坐标!!!!!!这些点之间的连线就可以看做两个坐标点之间的相对关系,就像两个向量之间的旋转矩阵一样。把虚线叫作观测模型,本质就是这个,没什么高大上的,实现运动模型。两个点之间的关系,无非用旋转矩阵就可以表示了嘛。理解了这个图再去看图优化就好些了。...原创 2021-08-10 12:08:05 · 236 阅读 · 0 评论 -
G2o,GTSAM,Ceres,Tensorflow优化器的方法比较(转载)
转载自:https://blog.csdn.net/ziliwangmoe/article/details/86561157转载 2021-08-09 22:15:58 · 524 阅读 · 0 评论 -
深入理解图优化与g2o:图优化篇
感觉写得不错转载自:https://www.cnblogs.com/gaoxiang12/p/5244828.html转载 2021-08-09 17:10:41 · 141 阅读 · 0 评论 -
从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码(现在主流是图优化而不是滤波了)
这篇让我很好理解了图优化,而且知道现在主流方法是图优化不是滤波了。转载自:https://www.cnblogs.com/CV-life/p/10286037.html从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码 2019-01-18 09:42 计算机视觉life 阅读(10878) 评论(0) 编辑 收藏 举报首发于公众号:计算机视觉life 旗下知识星球「从零开始学习SLAM」这可能是最清晰讲解g2o代码框架的文章理解图优化,一步步带你...转载 2021-08-09 15:16:43 · 1361 阅读 · 0 评论 -
GVINS:基于GNSS视觉惯性紧耦合的平滑状态估计方法 看来我的想法他们已经做了
看来我的想法他们已经做了似乎还公开了源码 https://github.com/HKUST-Aerial-Robotics/GVINShttps://www.bilibili.com/video/av376213227/这篇微信公众号文章详细介绍了https://mp.weixin.qq.com/s/7v0zLWNsMO1szUWs75hY0w...原创 2021-07-23 01:00:22 · 473 阅读 · 0 评论 -
发现一款APP可以看到哪些区域是禁飞区,还可以申报飞行,这样方便自己选地方test自己的无人机了。
发现一款APP可以看到哪些区域是禁飞区,还可以申报飞行,这样方便自己选地方test自己的无人机了。这里也可以看到整个郫都区都确实是禁飞区,别人不让飞也有道理。原创 2021-07-20 09:40:27 · 8545 阅读 · 0 评论 -
现在有一个感受就是,现在的导航,已经不可能单纯在飞控层面融合了。就算是单纯的T265和GPS数据的融合,也很多是基于图优化来做的,放到单片机层面写这个融合代码也不太好,单片机层面似乎更多是滤波方法的融
现在有一个感受就是,现在的导航,已经不可能单纯在飞控层面融合了。就算是单纯的T265和GPS数据的融合,也很多是基于图优化来做的,放到单片机层面写这个融合代码也不太好,单片机层面似乎更多是滤波方法的融合,更不说我们要从图像 IMU GPS层面的融合了。所以我现在也感觉没必要去改PX4代码,就在板载计算机层面做融合。。...原创 2021-07-18 10:17:06 · 170 阅读 · 0 评论 -
**这里也说到两大类融合框架,一类是卡尔曼滤波,一类是图优化。
这里也说到两大类融合框架,一类是卡尔曼滤波,一类是图优化。https://www.bilibili.com/video/BV1Y4411g7FJ?from=search&seid=7879757204467060170原创 2021-07-18 09:49:29 · 1744 阅读 · 0 评论 -
【泡泡图灵智库】一种用于快速自主飞行且非常鲁棒的双目视觉惯性里程计方法(ICRA-39)
这就是我Github看到的那个转载自:https://mp.weixin.qq.com/s/s-MHNBKRPOaxOcwsasBa7Q【泡泡图灵智库】一种用于快速自主飞行且非常鲁棒的双目视觉惯性里程计方法(ICRA-39)原创 paopaoslam 泡泡机器人SLAM 2018-09-04泡泡图灵智库,带你精读机器人顶级会议文章标题:Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight作者:Ke S.转载 2021-07-17 20:01:25 · 371 阅读 · 0 评论 -
这有个用MSCKF融合GPS和VIO的,并且提供了论文和视频
这有个用MACKF融合GPS和VIO的,并且提供了论文和视频https://github.com/maxibooksiyi/msckf_vio_GPS视频:https://www.youtube.com/watch?v=jxfJFgzmNSw&t=3s原创 2021-07-17 12:24:27 · 1251 阅读 · 1 评论 -
MSF详细解读与使用
转载自:https://www.cnblogs.com/ilekoaiq/p/9311357.html相机IMU融合四部曲(三):MSF详细解读与使用 极品巧克力 前言通过前两篇文章,《D-LG-EKF详细解读》和《误差状态四元数详细解读》,已经把相机和IMU融合的理论全部都推导一遍了。而且《误差状态四元数》还对实际操作中的可能遇到的一些情况,进行指导。这些理论都已经比较完整了,那么,该如何在实际当中操作呢?该如何用到实际产品中呢?误差状态四元数,是有开源的程序的,但是它是集成在rtsl转载 2021-07-17 12:14:01 · 1762 阅读 · 2 评论 -
我看到一个T265和GPS可以无缝切换的
我看到一个T265和GPS可以无缝切换的我觉得这个是可以做做的,这个估计是要动飞控的代码?似乎VOXL也是做的这个?https://www.youtube.com/watch?v=D6QJKHqwyjM原创 2021-07-16 16:59:03 · 370 阅读 · 2 评论 -
无人机不动的时候,PX4基于GPS解析出的无人机的本地位置数据飘的原因分析
无人机不动的时候,PX4基于GPS解析出的无人机的本地位置数据飘的原因分析但无人机GPS定点又定得很稳。首先我们可以知道GPS频率低,精度低,而且滞后,所以单靠GPS肯定是飘的,所以飞控肯定是融合了惯导的,难道是无人机不动的时候,惯导数据融得效果不好?syh也说过类似的,...原创 2021-07-15 23:50:12 · 2297 阅读 · 0 评论 -
我想研究一下匿名,ACfly,无名是如何解析GPS数据转为本地位置数据或者是如何和惯导融合得到本地位置数据的,并且和PX4做对比。
我想研究一下匿名,ACfly,无名是如何解析GPS数据转为本地位置数据或者是如何和惯导融合得到本地位置数据的,并且和PX4做对比。。原创 2021-07-15 20:29:12 · 369 阅读 · 0 评论 -
似乎传感器都得标定,相机,编码器,IMU
似乎传感器都得标定,相机,编码器,IMU之前vins有相机IMU联合标定,现在看深蓝学院的多传感器融合 里面说到编码器的标定IMU的标定。原创 2021-05-30 15:05:45 · 267 阅读 · 0 评论 -
看深蓝学院多传感器融合课程的笔记
贝叶斯推断和贝叶斯公式是整个卡尔曼的核心。贝叶斯滤波比卡尔曼滤波比卡尔曼滤波更宽泛。误差作为状态量融合工程师很多时候是调参工程师,卡尔曼滤波的QR,需要调参掌握观测方程的推导。13章第一节。掌握了这个方法无论推导什么东西都变得异常的简单。预积分的作用就是提高效率,不是为了提高精度。做预积分就是为了不重新积分。两个不互补,而且一个准一个不准,那就选一个,不用互补。干的四件事,先建图,再定位,再把图建得更好,再把定位做得更好。15章第一节开头讲。大部分公司都在从滤波往优化走,滤波...原创 2021-06-01 08:32:37 · 5310 阅读 · 0 评论 -
这里多传感器融合里面就用到了异常检测
这里多传感器融合里面就用到了异常检测,这真正把我以前的工作和现在都工作结合了起来。原创 2021-05-31 23:19:51 · 500 阅读 · 0 评论 -
用位姿图图优化来做VIO GPS融合的
https://blog.csdn.net/sinat_16643223/article/details/117370302陈春虎也之前问了,是用EKF还是图优化,他应该是看了深蓝学院多传感器融合那门课。https://blog.csdn.net/sinat_16643223/article/details/114456269...原创 2021-05-29 08:15:44 · 460 阅读 · 0 评论 -
Ethzasl MSF 多传感器融合框架的编译与使用教程
转载自:https://zhuanlan.zhihu.com/p/109892245Ethzasl MSF 多传感器融合框架的编译与使用教程bottle本科生,喜欢机器人,想搞机器人,面向未来编程ing本文简介我自己编译与安装MSF框架的心酸血泪史,并列举安装过程中可能会遇到的坑及其解决方案。本文不介绍MSF算法本质,MSF算法网上已经有讲的很好的中英文文章,此处再写有班门弄斧之嫌,有兴趣的同学可以移步以下链接:论文:A Robust and Modular Multi-Sens转载 2021-05-28 00:57:00 · 874 阅读 · 1 评论 -
[ROS] 多传感器卡尔曼融合框架 Ethzasl MSF Framework 编译与使用
转载自:http://www.liuxiao.org/2016/07/ros-%E5%A4%9A%E4%BC%A0%E6%84%9F%E5%99%A8%E5%8D%A1%E5%B0%94%E6%9B%BC%E8%9E%8D%E5%90%88%E6%A1%86%E6%9E%B6-ethzasl-msf-framework-%E7%BC%96%E8%AF%91%E4%B8%8E%E4%BD%BF%E7%94%A8/Home机器人ROS[ROS] 多传感器卡尔曼融合框架 Ethzasl MSF Framewo转载 2021-05-28 00:53:35 · 746 阅读 · 1 评论 -
卡尔曼滤波的缺点就是需要精确的模型,所以由此产生了自校正卡尔曼滤波 自适应卡尔曼滤波
卡尔曼滤波的缺点就是需要精确的模型,所以由此产生了自校正卡尔曼滤波 自适应卡尔曼滤波所以都是在解决问题中产生下面拍自《多传感器加权观测融合kalman滤波理论》下面拍自《现代信息融合技术在组合导航中的应用》...原创 2021-05-27 11:16:41 · 2901 阅读 · 0 评论 -
LVI-SAM:使用SAM的激光-视觉-惯导紧耦合里程计
转载自:https://mp.weixin.qq.com/s/MlN-0BD9rAdJwsVco7TRlgLVI-SAM:使用SAM的激光-视觉-惯导紧耦合里程计原创 泡泡机器人 泡泡机器人SLAM 今天标题:LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping作者:Tixiao Shan, Brendan Englot, Carlo Ratti, and Daniela .转载 2021-05-27 08:28:07 · 1854 阅读 · 0 评论 -
ROS实现串口GPS数据的解析与通信(这篇文章所用的代码和我买的带有ROS功能包的GPS模块的功能包的代码一样)
转载自:https://blog.csdn.net/weixin_43795921/article/details/85219249ROS实现串口GPS数据的解析与通信何伯特 2018-12-22 23:37:55 7123 收藏 86 分类专栏: ROS 文章标签: 串口 通信 ROS GPS版权1. 配置串口配置串口时,利用ROS自带的serial功能包进行串口数据的读取,具体来说就是创建一个串口对象,用成员函数read进行读取,需要注意的是其中Timeout的设置以及read转载 2021-05-25 08:43:03 · 2433 阅读 · 1 评论