Mamba源码解析

mamba-minimal/model.py at master · johnma2006/mamba-minimal · GitHub

from dataclasses import dataclass
from einops import rearrange, repeat, einsum


@dataclass
class ModelArgs:
    d_model: int
    n_layer: int
    vocab_size: int
    d_state: int = 16
    expand: int = 2
    dt_rank: Union[int, str] = 'auto'
    d_conv: int = 4 
    pad_vocab_size_multiple: int = 8
    conv_bias: bool = True
    bias: bool = False
    
    def __post_init__(self):
        self.d_inner = int(self.expand * self.d_model)
        
        if self.dt_rank == 'auto':
            self.dt_rank = math.ceil(self.d_model / 16)
            
        if self.vocab_size % self.pad_vocab_size_multiple != 0:
            self.vocab_size += (self.pad_vocab_size_multiple
                                - self.vocab_size % self.pad_vocab_size_multiple)


class Mamba(nn.Module):
    def __init__(self, args: ModelArgs):
        """Full Mamba model."""
        super().__init__()
        self.args = args
        
        self.embedding = nn.Embedding(args.vocab_size, args.d_model)
        self.layers = nn.ModuleList([ResidualBlock(args) for _ in range(args.n_layer)])
        self.norm_f = RMSNorm(args.d_model)

        self.lm_head = nn.Linear(args.d_model, args.vocab_size, bias=False)
        self.lm_head.weight = self.embedding.weight  # Tie output projection to embedding weights.
                                                     # See "Weight Tying" paper


    def forward(self, input_ids):
        """
        Args:
            input_ids (long tensor): shape (b, l)    (See Glossary at top for definitions of b, l, d_in, n...)
    
        Returns:
            logits: shape (b, l, vocab_size)

        Official Implementation:
            class MambaLMHeadModel, https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py#L173

        """
        x = self.embedding(input_ids)
        
        for layer in self.layers:
            x = layer(x)
            
        x = self.norm_f(x)
        logits = self.lm_head(x)

        return logits
from dataclasses import dataclass
from einops import rearrange, repeat, einsum
import torch
import torch.nn as nn
import math
from typing import Union

@dataclass
class ModelArgs:
    d_model: int  # 模型的隐藏层维度
    n_layer: int  # 模型的层数
    vocab_size: int  # 词汇表大小
    d_state: int = 16  # 状态维度,默认值为16
    expand: int = 2  # 扩展因子,默认值为2
    dt_rank: Union[int, str] = 'auto'  # 时间嵌入的秩,默认值为'auto'
    d_conv: int = 4  # 卷积层的维度,默认值为4
    pad_vocab_size_multiple: int = 8  # 词汇表大小的填充倍数,默认值为8
    conv_bias: bool = True  # 是否在卷积层中使用偏置,默认值为True
    bias: bool = False  # 是否在全连接层中使用偏置,默认值为False
    
    def __post_init__(self):
        self.d_inner = int(self.expand * self.d_model)  # 内部维度,扩展因子乘以隐藏层维度
        
        if self.dt_rank == 'auto':
            self.dt_rank = math.ceil(self.d_model / 16)  # 当dt_rank为'auto'时,计算实际的秩
            
        if self.vocab_size % self.pad_vocab_size_multiple != 0:
            # 调整词汇表大小,使其成为pad_vocab_size_multiple的倍数
            self.vocab_size += (self.pad_vocab_size_multiple
                                - self.vocab_size % self.pad_vocab_size_multiple)

class Mamba(nn.Module):
    def __init__(self, args: ModelArgs):
        """完整的Mamba模型。"""
        super().__init__()
        self.args = args
        
        self.embedding = nn.Embedding(args.vocab_size, args.d_model)  # 嵌入层
        self.layers = nn.ModuleList([ResidualBlock(args) for _ in range(args.n_layer)])  # 残差块层列表
        self.norm_f = RMSNorm(args.d_model)  # 归一化层

        self.lm_head = nn.Linear(args.d_model, args.vocab_size, bias=False)  # 线性层,用于输出词汇表大小的logits
        self.lm_head.weight = self.embedding.weight  # 将输出投影权重与嵌入层权重共享(权重绑定)

    def forward(self, input_ids):
        """
        Args:
            input_ids (long tensor): shape (b, l)    (参见论文中的定义,b为批次大小,l为序列长度)
    
        Returns:
            logits: shape (b, l, vocab_size)

        官方实现:
            class MambaLMHeadModel, https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py#L173
        """
        x = self.embedding(input_ids)  # 将输入ID映射到嵌入向量
        
        for layer in self.layers:
            x = layer(x)  # 依次通过每个残差块层
            
        x = self.norm_f(x)  # 通过归一化层
        logits = self.lm_head(x)  # 计算logits

        return logits  # 返回logits

代码解释:

ModelArgs 数据类
  • d_modeln_layervocab_size 等参数定义了模型的基本配置。
  • d_stateexpanddt_rankd_convpad_vocab_size_multipleconv_biasbias 是一些默认参数,用于进一步配置模型。
  • __post_init__ 方法在初始化后计算内部维度 (d_inner) 和调整词汇表大小 (vocab_size) 使其成为指定倍数。
Mamba 类
  • __init__ 方法初始化 Mamba 模型,创建嵌入层 (embedding)、一系列残差块层 (layers)、归一化层 (norm_f) 和输出层 (lm_head)。
  • forward 方法是模型的前向传播过程:
    • 输入的 input_ids 被映射到嵌入向量。
    • 嵌入向量依次通过每个残差块层进行处理。
    • 经过归一化层后,计算输出的 logits
class ResidualBlock(nn.Module):
    def __init__(self, args: ModelArgs):
        """残差块,包含选择性状态空间模型(SSM)和卷积层。"""
        super().__init__()
        self.args = args
        self.norm1 = RMSNorm(args.d_model)  # 第一个归一化层
        self.norm2 = RMSNorm(args.d_model)  # 第二个归一化层
        self.ssm = SelectiveSSM(args)  # 选择性状态空间模型
        self.conv = nn.Conv1d(args.d_model, args.d_model, kernel_size=args.d_conv, bias=args.conv_bias)  # 一维卷积层

    def forward(self, x):
        """残差块的前向传播。"""
        residual = x  # 保存输入的残差
        x = self.norm1(x)  # 通过第一个归一化层
        x = self.ssm(x)  # 通过选择性状态空间模型
        x = self.norm2(x)  # 通过第二个归一化层
        x = rearrange(x, 'b l d -> b d l')  # 调整维度以适应卷积操作
        x = self.conv(x)  # 通过卷积层
        x = rearrange(x, 'b d l -> b l d')  # 调整维度回原始形状
        return x + residual  # 将残差加回输出

class SelectiveSSM(nn.Module):
    def __init__(self, args: ModelArgs):
        """选择性状态空间模型(SSM)。"""
        super().__init__()
        self.args = args
        self.hidden = nn.Parameter(torch.randn(args.d_model, args.d_state))  # 隐藏状态参数
        self.linear = nn.Linear(args.d_model, args.d_state, bias=args.bias)  # 线性层将输入映射到状态维度
        self.output = nn.Linear(args.d_state, args.d_model, bias=args.bias)  # 线性层将状态维度映射回输出维度

    def forward(self, x):
        """选择性状态空间模型的前向传播。"""
        state = torch.tanh(self.linear(x) + self.hidden)  # 计算新的状态
        output = self.output(state)  # 将状态映射回输出维度
        return output  # 返回输出

代码解释(续):

ResidualBlock 类
  • __init__ 方法初始化残差块,包含两个归一化层 (norm1 和 norm2)、一个选择性状态空间模型 (ssm) 和一个一维卷积层 (conv)。
  • forward 方法是残差块的前向传播过程:
    • 保存输入为残差 (residual)。
    • 输入依次通过第一个归一化层、选择性状态空间模型和第二个归一化层。
    • 通过 rearrange 函数调整维度,以适应卷积操作。
    • 输入通过卷积层处理。
    • 再次调整维度回到原始形状。
    • 将残差加回输出,形成残差连接。
SelectiveSSM 类
  • __init__ 方法初始化选择性状态空间模型,包含隐藏状态参数 (hidden)、一个将输入映射到状态维度的线性层 (linear) 和一个将状态维度映射回输出维度的线性层 (output)。
  • forward 方法是选择性状态空间模型的前向传播过程:
    • 通过线性层和隐藏状态计算新的状态,并应用 tanh 激活函数。
    • 将状态通过线性层映射回输出维度。
    • 返回输出。

结论

通过对上述代码的解释,我们可以看到 Mamba 模型如何结合选择性状态空间模型与卷积层来实现高效的序列建模。残差块和归一化层的使用有助于稳定训练并提高模型性能。这些设计选择充分体现了论文中所提到的改进和优化方法,旨在解决 Transformer 的计算效率问题,同时在多种模态下保持优异的性能。

@staticmethod
    def from_pretrained(pretrained_model_name: str):
        """Load pretrained weights from HuggingFace into model.
    
        Args:
            pretrained_model_name: One of
                * 'state-spaces/mamba-2.8b-slimpj'
                * 'state-spaces/mamba-2.8b'
                * 'state-spaces/mamba-1.4b'
                * 'state-spaces/mamba-790m'
                * 'state-spaces/mamba-370m'
                * 'state-spaces/mamba-130m'
                            
        Returns:
            model: Mamba model with weights loaded
    
        """
        from transformers.utils import WEIGHTS_NAME, CONFIG_NAME
        from transformers.utils.hub import cached_file
        
        def load_config_hf(model_name):
            resolved_archive_file = cached_file(model_name, CONFIG_NAME,
                                                _raise_exceptions_for_missing_entries=False)
            return json.load(open(resolved_archive_file))
        
        
        def load_state_dict_hf(model_name, device=None, dtype=None):
            resolved_archive_file = cached_file(model_name, WEIGHTS_NAME,
                                                _raise_exceptions_for_missing_entries=False)
            return torch.load(resolved_archive_file, weights_only=True, map_location='cpu', mmap=True)
        
        config_data = load_config_hf(pretrained_model_name)
        args = ModelArgs(
            d_model=config_data['d_model'],
            n_layer=config_data['n_layer'],
            vocab_size=config_data['vocab_size']
        )
        model = Mamba(args)
        
        state_dict = load_state_dict_hf(pretrained_model_name)
        new_state_dict = {}
        for key in state_dict:
            new_key = key.replace('backbone.', '')
            new_state_dict[new_key] = state_dict[key]
        model.load_state_dict(new_state_dict)
        
        return model

逐行解释

总结

这个 from_pretrained 静态方法的主要功能是从 HuggingFace 预训练模型库中加载预训练的模型配置和权重,并将其应用到 Mamba 模型中。具体步骤如下:

  1. @staticmethod

    • 定义一个静态方法,表示该方法不需要访问实例或类属性。
  2. def from_pretrained(pretrained_model_name: str):

    • 定义 from_pretrained 方法,接收一个预训练模型名称的字符串参数 pretrained_model_name
  3. """Load pretrained weights from HuggingFace into model.

    • 方法的文档字符串,描述方法的功能:从 HuggingFace 加载预训练权重到模型中。
  4. Args:

    • 文档字符串中的参数部分。
  5. pretrained_model_name: One of

    • 列出可选的预训练模型名称。
  6. * 'state-spaces/mamba-2.8b-slimpj'

    • 继续列出可选的预训练模型名称(多个选项)。
  7. Returns:

    • 文档字符串中的返回值部分。
  8. model: Mamba model with weights loaded

    • 返回值的描述:加载了权重的 Mamba 模型。
  9. from transformers.utils import WEIGHTS_NAME, CONFIG_NAME

    • 从 transformers.utils 导入 WEIGHTS_NAME 和 CONFIG_NAME 常量。
  10. from transformers.utils.hub import cached_file

    • 从 transformers.utils.hub 导入 cached_file 函数。
  11. def load_config_hf(model_name):

    • 定义内部函数 load_config_hf,用于加载模型配置。
  12. resolved_archive_file = cached_file(model_name, CONFIG_NAME,

    • 使用 cached_file 函数获取配置文件的路径。
  13. _raise_exceptions_for_missing_entries=False)

    • 设置选项,如果缺少条目则不引发异常。
  14. return json.load(open(resolved_archive_file))

    • 打开配置文件并加载 JSON 数据。
  15. def load_state_dict_hf(model_name, device=None, dtype=None):

    • 定义内部函数 load_state_dict_hf,用于加载模型权重。
  16. resolved_archive_file = cached_file(model_name, WEIGHTS_NAME,

    • 使用 cached_file 函数获取权重文件的路径。
  17. _raise_exceptions_for_missing_entries=False)

    • 设置选项,如果缺少条目则不引发异常。
  18. return torch.load(resolved_archive_file, weights_only=True, map_location='cpu', mmap=True)

    • 使用 torch.load 加载权重文件,只加载权重部分,并映射到 CPU。
  19. config_data = load_config_hf(pretrained_model_name)

    • 调用 load_config_hf 函数加载配置数据。
  20. args = ModelArgs(

    • 使用加载的配置数据初始化 ModelArgs 对象。
  21. d_model=config_data['d_model'],

    • 从配置数据中获取 d_model 参数并赋值。
  22. n_layer=config_data['n_layer'],

    • 从配置数据中获取 n_layer 参数并赋值。
  23. vocab_size=config_data['vocab_size']

    • 从配置数据中获取 vocab_size 参数并赋值。
  24. )

    • 结束 ModelArgs 对象的初始化。
  25. model = Mamba(args)

    • 使用 args 参数创建 Mamba 模型实例。
  26. state_dict = load_state_dict_hf(pretrained_model_name)

    • 调用 load_state_dict_hf 函数加载模型的状态字典(权重)。
  27. new_state_dict = {}

    • 创建一个新的空字典 new_state_dict,用于存储处理后的状态字典。
  28. for key in state_dict:

    • 遍历 state_dict 中的每个键。
  29. new_key = key.replace('backbone.', '')

    • 将键中的 'backbone.' 前缀替换为空字符串。
  30. new_state_dict[new_key] = state_dict[key]

    • 将处理后的键和值存入 new_state_dict
  31. model.load_state_dict(new_state_dict)

    • 使用处理后的 new_state_dict 加载模型的状态字典。
  32. return model

    • 返回加载了预训练权重的 Mamba 模型。
  33. 使用 cached_file 函数分别获取模型的配置文件和权重文件。
  34. 加载配置文件并使用其内容初始化 ModelArgs 对象。
  35. 基于 ModelArgs 对象创建 Mamba 模型实例。
  36. 加载权重文件并处理状态字典中的键,以适配当前模型的命名规范。
  37. 将处理后的状态字典加载到模型中。
  38. 返回加载了预训练权重的 Mamba 模型。

class ResidualBlock(nn.Module):
    def __init__(self, args: ModelArgs):
        """Simple block wrapping Mamba block with normalization and residual connection."""
        super().__init__()
        self.args = args
        self.mixer = MambaBlock(args)
        self.norm = RMSNorm(args.d_model)
        

    def forward(self, x):
        """
        Args:
            x: shape (b, l, d)    (See Glossary at top for definitions of b, l, d_in, n...)
    
        Returns:
            output: shape (b, l, d)

        Official Implementation:
            Block.forward(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/modules/mamba_simple.py#L297
            
            Note: the official repo chains residual blocks that look like
                [Add -> Norm -> Mamba] -> [Add -> Norm -> Mamba] -> [Add -> Norm -> Mamba] -> ...
            where the first Add is a no-op. This is purely for performance reasons as this
            allows them to fuse the Add->Norm.

            We instead implement our blocks as the more familiar, simpler, and numerically equivalent
                [Norm -> Mamba -> Add] -> [Norm -> Mamba -> Add] -> [Norm -> Mamba -> Add] -> ....
            
        """
        output = self.mixer(self.norm(x)) + x

        return output

这里是对提供的Python代码片段中的ResidualBlock类的逐行解释,该类是Mamba模型架构的一部分:

类定义和构造函数

python

复制

class ResidualBlock(nn.Module):
  • 描述:这行代码定义了一个新的类ResidualBlock,继承自nn.Modulenn.Module是PyTorch中所有神经网络模块的基类,任何自定义模块都应该扩展它。

python

复制

def __init__(self, args: ModelArgs):
  • 描述:这是ResidualBlock的构造函数。它接受一个参数args,预期是ModelArgs的一个实例,这是一个类,它可能包含模型的配置参数。

python

复制

    """Simple block wrapping Mamba block with normalization and residual connection."""
    super().__init__()
  • 描述:调用父类(nn.Module)的构造函数。这是必须的,以正确初始化PyTorch模块。

python

复制

    self.args = args
  • 描述:将传递的args存储在一个实例变量中,以便可能在块中使用。

python

复制

    self.mixer = MambaBlock(args)
  • 描述:创建一个MambaBlock的实例,传递argsMambaBlock可能是Mamba模型的一个关键组件,用于处理输入数据。

python

复制

    self.norm = RMSNorm(args.d_model)
  • 描述:初始化一个RMS规范化层(RMSNorm)。args.d_model指定了模型嵌入的维度,规范化层将使用这个维度。

前向方法

python

复制

def forward(self, x):
  • 描述:定义了ResidualBlock前向传播。x是传入块的输入张量

python

复制

    """
    Args:
        x: shape (b, l, d)    (See Glossary at top for definitions of b, l, d_in, n...)
    
    Returns:
        output: shape (b, l, d)
    """
  • 描述:这个文档字符串提供了前向方法的输入和输出形状的信息。b表示批次大小,l表示序列长度,d表示特征维度。

python

复制

    output = self.mixer(self.norm(x)) + x
  • 描述:首先将规范化层应用于x,然后将规范化后的数据输入到MambaBlockself.mixer)。MambaBlock的输出随后被添加到原始输入x上,形成一个残差连接。这是深度学习中常用的技术,有助于梯度通过深层网络并缓解梯度消失问题。

python

复制

    return output
  • 描述:返回输出张量,其形状与输入张量(b, l, d)相同。

附加说明

  • 官方实现的评论提供了关于操作顺序实现块的不同方式的见解。虽然官方仓库可能使用不同的顺序出于性能原因,此实现使用了更熟悉的模式[Norm -> Mamba -> Add]。这种模式不仅更简单,而且在数值上等同于官方仓库中使用的模式,展示了基于框架能力和性能优化的实现方法的灵活性。
class MambaBlock(nn.Module):
    def __init__(self, args: ModelArgs):
        """A single Mamba block, as described in Figure 3 in Section 3.4 in the Mamba paper [1]."""
        super().__init__()
        self.args = args

        self.in_proj = nn.Linear(args.d_model, args.d_inner * 2, bias=args.bias)

        self.conv1d = nn.Conv1d(
            in_channels=args.d_inner,
            out_channels=args.d_inner,
            bias=args.conv_bias,
            kernel_size=args.d_conv,
            groups=args.d_inner,
            padding=args.d_conv - 1,
        )

        # x_proj takes in `x` and outputs the input-specific Δ, B, C
        self.x_proj = nn.Linear(args.d_inner, args.dt_rank + args.d_state * 2, bias=False)
        
        # dt_proj projects Δ from dt_rank to d_in
        self.dt_proj = nn.Linear(args.dt_rank, args.d_inner, bias=True)

        A = repeat(torch.arange(1, args.d_state + 1), 'n -> d n', d=args.d_inner)
        self.A_log = nn.Parameter(torch.log(A))
        self.D = nn.Parameter(torch.ones(args.d_inner))
        self.out_proj = nn.Linear(args.d_inner, args.d_model, bias=args.bias)
        

    def forward(self, x):
        """Mamba block forward. This looks the same as Figure 3 in Section 3.4 in the Mamba paper [1].
    
        Args:
            x: shape (b, l, d)    (See Glossary at top for definitions of b, l, d_in, n...)
    
        Returns:
            output: shape (b, l, d)
        
        Official Implementation:
            class Mamba, https://github.com/state-spaces/mamba/blob/main/mamba_ssm/modules/mamba_simple.py#L119
            mamba_inner_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L311
            
        """
        (b, l, d) = x.shape
        
        x_and_res = self.in_proj(x)  # shape (b, l, 2 * d_in)
        (x, res) = x_and_res.split(split_size=[self.args.d_inner, self.args.d_inner], dim=-1)

        x = rearrange(x, 'b l d_in -> b d_in l')
        x = self.conv1d(x)[:, :, :l]
        x = rearrange(x, 'b d_in l -> b l d_in')
        
        x = F.silu(x)

        y = self.ssm(x)
        
        y = y * F.silu(res)
        
        output = self.out_proj(y)

        return output

这里继续逐行解释代码,其中定义了MambaBlock这个类,这个类是Mamba模型架构的一个组件:

类定义和构造函数

python

复制

class MambaBlock(nn.Module):
  • 描述:定义了一个名为MambaBlock的类,继承自nn.Module。这是PyTorch中所有神经网络模块的基类。

python

复制

def __init__(self, args: ModelArgs):
  • 描述:这是MambaBlock的构造函数。它接受一个名为args的参数,该参数应是ModelArgs的实例,用于存储模型配置参数。

python

复制

    """A single Mamba block, as described in Figure 3 in Section 3.4 in the Mamba paper [1]."""
    super().__init__()
  • 描述:调用父类nn.Module的构造函数,以正确初始化PyTorch模块。

python

复制

    self.args = args
  • 描述:将传递的args保存在实例变量中。

python

复制

    self.in_proj = nn.Linear(args.d_model, args.d_inner * 2, bias=args.bias)
  • 描述:初始化一个全连接层(nn.Linear),用于将输入从模型维度d_model投影到内部维度的两倍d_inner * 2。是否使用偏置由args.bias决定。

1D 卷积层

python

复制

    self.conv1d = nn.Conv1d(
        in_channels=args.d_inner,
        out_channels=args.d_inner,
        bias=args.conv_bias,
        kernel_size=args.d_conv,
        groups=args.d_inner,
        padding=args.d_conv - 1,
    )
  • 描述:初始化一个1D卷积层,输入和输出通道数为d_inner,使用分组卷积,每个通道独立处理,核大小为d_conv,填充为d_conv - 1以保持长度不变,args.conv_bias决定是否使用偏置。

额外的线性层

python

复制

    self.x_proj = nn.Linear(args.d_inner, args.dt_rank + args.d_state * 2, bias=False)
  • 描述:初始化一个线性层,从d_inner维度映射到dt_rank + d_state * 2,不使用偏置。这个层用于生成特定输入的Δ, B, C。

python

复制

    self.dt_proj = nn.Linear(args.dt_rank, args.d_inner, bias=True)
  • 描述:初始化一个线性层,将维度从dt_rank映射回d_inner,使用偏置。

参数初始化

python

复制

    A = repeat(torch.arange(1, args.d_state + 1), 'n -> d n', d=args.d_inner)
    self.A_log = nn.Parameter(torch.log(A))
    self.D = nn.Parameter(torch.ones(args.d_inner))
  • 描述:初始化矩阵A和向量D作为模型参数。A是从1到d_state+1的序列,重复d_inner次,然后取对数并设置为可训练参数。D初始化为全1向量,并设置为可训练参数。

python

复制

    self.out_proj = nn.Linear(args.d_inner, args.d_model, bias=args.bias)
  • 描述:初始化一个线性层,用于将内部维度d_inner映射回模型的输出维度d_model。是否使用偏置由args.bias决定。

前向传播方法

python

复制

def forward(self, x):
  • 描述:定义了MambaBlock的前向传播方法。x是输入张量。

python

复制

    (b, l, d) = x.shape
  • 描述:解包输入张量的形状,其中b是批量大小,l是序列长度,d是特征维度。

python

复制

    x_and_res = self.in_proj(x)  # shape ((b, l, 2 * d_inner)
  • 描述:将输入x通过in_proj全连接层进行转换,输出维度变为2 * d_inner,这允许将数据分为两部分,通常用于不同的处理目的。

python

复制

    (x, res) = x_and_res.split(split_size=[self.args.d_inner, self.args.d_inner], dim=-1)
  • 描述:将x_and_res沿最后一个维度分割为两个部分xres,每部分都有d_inner的维度。

python

复制

    x = rearrange(x, 'b l d_in -> b d_in l')
  • 描述:使用rearrange函数改变x的形状以适应卷积层的期望输入格式,即(batch_size, channels, length)。

python

复制

    x = self.conv1d(x)[:, :, :l]
  • 描述:将变换后的x输入到1D卷积层conv1d,之后对输出进行切片操作以匹配原始输入的长度。

python

复制

    x = rearrange(x, 'b d_in l -> b l d_in')
  • 描述:再次使用rearrange函数将卷积输出转换回原始的(batch, length, channels)格式。

python

复制

    x = F.silu(x)
  • 描述:对卷积层的输出应用SiLU(也称为Swish)激活函数,这是一种非线性激活函数,有助于引入非线性特性以处理复杂的数据关系。

python

复制

    y = self.ssm(x)
  • 描述:将激活后的x输入到某个状态空间模型(SSM)中进行进一步处理。这里的self.ssm似乎没有在构造函数中定义,可能是一个遗漏或者假设外部已定义。

python

复制

    y = y * F.silu(res)
  • 描述:将状态空间模型的输出与res经过SiLU激活函数后的结果相乘,这可能是为了合并两种不同的信息流,增强模型的表达能力。

python

复制

    output = self.out_proj(y)
  • 描述:最终将y通过一个全连接层out_proj进行转换,从d_inner维度映射回原始的d_model维度。

python

复制

    return output
  • 描述:返回从MambaBlock处理后的输出,其形状为(batch_size, sequence_length, d_model),与输入x形状相同。

通过这个详细解释,我们可以看到MambaBlock如何将输入数据通过一个复杂的处理流水线转化,涉及线性变换、卷积处理、激活函数,以及可能的状态空间模型处理,最终输出处理后的数据。这是深度学习中常见的一个模块化处理方式,有助于处理和学习序列数据中的复杂模式。

  • 43
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI生成曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值