深度学习扫地机器人

科沃斯推出搭载AIVI人工智能和视觉识别系统的扫地机器人T8 AIVI,利用dToF技术和200万像素传感器提升清洁效率和导航准确性。扫地机器人行业在AI和新技术的推动下寻求突破,市场潜力巨大。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习扫地机器人

在这里插入图片描述

如今,家电的智能化是行业大趋势,从解放人类的双手到成为用户的人工智能伴侣,家用电器的应用场景不断拓展。

在这其中,扫地机器人已成为家电行业中逆势增长的一个突出品类。扫地机器人进入中国市场较晚,但是到2018年市场规模已经达到了577万台。近6年来,该品类的市场规模翻了10倍。根据某主流电商平台数据显示,2019年全年,扫地机器人的销售额已经占到了智能家电销售总额的三成以上,并且销量同比增速超过17%,远远领先家电大盘。并且我国2019年扫地机器人销量已经超过了美国和西欧的总和。不过当前扫地机器人也面临增长瓶颈,在传统清洁功能已经发展较为完善后,厂商们普遍开始从AI方面寻找突破点。

在这里插入图片描述

今天,科沃斯机器人发布了旗下最新一代扫地机器人地宝T8 AIVI,据称这也是他们首次将dToF技术用于扫地机器人的视觉识别系统中。同时科沃斯通过神经网络算法的融入进一步提升了扫地机器人的AI能力。科沃斯此次在T8 AIVI中搭载的AIVI人工智能和视觉识别系统,无疑代表了他们对扫地机器人智能化的另一次突破性尝试。

先要扫的干净,再说别的

一款优秀的智能家电,首先要是一款优秀的家电,因此其核心功能必须要过硬。反映在扫地机器人上,就是它的清洁能力。科沃斯表示,传统扫地机器人在使用中遇到的最常见问题就是顽固污渍需要人工二次清洁,这也让用户体验大打折扣。科沃

### 深度学习机器人视觉中的应用 #### 技术原理 深度学习应用于机器人视觉主要依赖于卷积神经网络(CNN),这是一种专门设计用于处理图像数据的神经网络结构。通过多层特征提取,CNN可以从原始图像中自动学习到具有区分性的特征表示,从而实现对环境的理解和识别[^1]。 #### 应用场景一:自主导航 基于深度学习的视觉机器人导航技术显著提高了机器人的智能化程度。该方法利用摄像头获取周围环境信息,并借助预训练好的深度模型来解析这些图像,进而规划最优路径并避开障碍物。这种能力使得机器人可以在未知且变化频繁的真实世界里自由移动,适用于诸如无人配送车、家庭清洁机器人等多种场合。 ```python import torch from torchvision import models, transforms from PIL import Image def load_model(): model = models.resnet50(pretrained=True) model.eval() return model transform_pipeline = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), ]) image_path = 'path_to_image.jpg' img = Image.open(image_path).convert('RGB') input_tensor = transform_pipeline(img).unsqueeze(0) model = load_model() with torch.no_grad(): output = model(input_tensor) print(output) ``` 此代码片段展示了如何加载一个预先训练过的ResNet-50模型并对单张图片执行推理过程,这是构建更复杂视觉任务的基础之一。 #### 应用场景二:物体抓取与操作 除了导航外,深度强化学习也被广泛应用于提升机器人手眼协调能力和精确操控物品的能力。例如,在工业自动化生产线上的装配作业或是物流中心内的货物分拣工作都可以看到这类技术的身影。通过不断试错的方式让机械臂学会最佳的动作序列以完成特定目标——这便是所谓的策略学习[^2]。 #### 实际案例分析 - **无人驾驶汽车**:采用先进的计算机视觉算法配合激光雷达等传感器融合方案,使车辆能够在开放道路上安全行驶; - **智能家居设备**:扫地机器人配备有高清摄像装置以及内置AI芯片,可以智能规避家具和其他障碍物; - **医疗辅助器械**:手术机器人依靠高精度成像技术和实时反馈机制协助医生实施微创外科手术;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值