结晶二维氮化物半导体的室温铁磁性与压电性

西安电子科技大学的研究团队在二维氮化碳晶体上实现了室温铁磁性和压电性,通过优化制备方法,获得了高结晶度的材料,这为信息存储和量子计算提供了潜在的新解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景介绍

二维压电铁磁半导体材料在信息存储和量子计算等应用领域具有重要的应用前景。然而,目前报道的大部分二维压电铁磁半导体材料的居里温度都远远低于室温,这极大地限制了它们的实际应用。因此,寻找新型具有室温以上磁有序的二维压电半导体材料对于信息存储和量子计算领域的发展具有重要意义。二维氮化碳基宽禁带半导体材料具有长的自旋扩散长度,在信息存储器件中有巨大的应用前景。

前期的研究证实,其在室温条件下具有较强的面内压电性,这归因于非中心对称的三角形纳米孔。然而该材料本身没有未配对电子,表现为本征抗磁性,这限制了其在信息存储器件中的应用。究其原因在于,目前制备的二维氮化碳为非晶态且有很多氨基,这限制了其本征磁性。因此,制备出高结晶性的二维氮化碳进而研究其本征磁性、压电性具有重要意义。


成果简介

近日,西安电子科技大学郝跃院士团队刘艳教授、王勇副教授通过改变前驱体以及热缩聚参数,成功制备出高结晶二维氮化碳。结构表证和理论计算证实:i)样品表现出半导体属性(带隙为 1.8 eV),同时结构发生反演对称性破缺;ii)在高度有序的七嗪结构中引入了C-O-C键,进而获得局域自旋并实现磁有序,从而获得强的室温铁磁性;iii) 结晶氮化碳在室温下表现出压电和铁磁特性,同时应力可以有效调控室温下的磁性行为和压电势。该研究工作可为二维半导体材料的室温铁磁性与压电性研究提供一定的参考价值,有望为信息存储和量子计算等应用领域提供更好的解决方案。


图文导读

Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值