师从催化大牛,首席研究科学家,新发Nature大子刊

碱金属阳离子(AM+)具有高溶解度和离子电导率,使其成为水性电解质中的最佳成分。尽管传统观点认为AM+是化学惰性的,但电催化对AM+的强烈依赖性引发了关于其意外催化作用的争论,仍然缺乏确凿的证据。 

2024年12月20日,韩国浦项科技大学Chang Hyuck Choi副教授、韩国科学技术院(KAIST)Hyungjun Kim教授、韩国科学技术研究院(KIST)Hyung-Suk Oh在国际顶级期刊Nature Catalysis发表题为《Alkali metal cations act as homogeneous cocatalysts for the oxygen reduction reaction in aqueous electrolytes》的研究论文,Sang Gu Ji、Minho M. Kim、Man Ho Han为论文共同第一作者,Chang Hyuck Choi副教授、Hyungjun Kim教授、Hyung-Suk Oh为论文共同通讯作者。 

Chang Hyuck Choi,浦项科技大学副教授。2007年、2012年在韩国科学技术院(KAIST)获得学士和博士学位,并留校从事博士后研究;2014-2016年在马克斯·普朗克铁研究所继续接受博士后训练;2016年加入GIST;2022年加入浦项科技大学。 

Chang Hyuck Choi副教授课题组的研究领域是1.对电催化的基本理解;2.新型电催化材料的发展;3.燃料电池和电解槽;4.有用产物的电化学合成;5.新分析技术的开发。 

Hyungjun Kim,韩国科学技术院(KAIST)教授。2004年获得KAIST学士学位,2009年获得加州理工学院博士学位。2009年以高级研究员加入KAIST,2023年晋升为教授。 Hyungjun Kim教授的研究兴趣为理论与计算化学、多尺度材料模拟、计算电化学、能源材料和多相催化剂设计。 

Hyung-Suk Oh,韩国科学技术研究院(KIST)首席研究科学家。2006年、2008年、2012年在延世大学获得学士、硕士和博士学位,2012-2017年在柏林工业大学从事博士后研究,导师:Peter Strasser 教授,2017年加入KIST,2021年晋升为首席研究科学家。

c6532772e1f39919594a38aec06a0ae9.jpeg 在这里,作者证明AM+可以与反应中间体偶联,并确定在水性条件下作为均相助催化剂的动力学,用于碳催化剂上的碱性氧还原反应。原位X射线吸收光谱揭示了带电电极上Na+的电子结构从水合状态发生的变化。 

原位拉曼光谱进一步确定,这种变化是由于水不稳定的NaO2的形成而导致,NaO2是OOH−生产中的关键中间体。 

结合理论计算,这一发现阐明了AM+在水环境中违反直觉的助催化作用,强调了改进界面设计原理以实现更好的电催化的迫切性。

d2d18aef4920de3f50775b837f57699b.jpeg图1:不同电解液中KB的氧还原反应(ORR)极化曲线

fbc58c4ea09f7b6f9ae30f956d0ad391.jpeg图2:动力学同位素效应(KIE)研究和提出的ORR机制

2e132ec21ac25c22fda74486e24741a2.jpeg图3:基于Marcus理论的阳离子耦合电子转移(ET)到O2的模型

f7bb29e06fb457ea005e0afdbb00f4dc.jpeg图4:原位NEXAFS和拉曼光谱学研究

综上,这篇论文研究了碱金属阳离子(AM+)在水溶液电解质中作为均相共催化剂在碱性氧还原反应(ORR)中的作用,发现AM+能够与反应中间体耦合并决定反应动力学。结果表明,AM+并非化学上惰性,而是通过与反应中间体形成复合物积极参与调节反应动力学,这一发现对于设计更高效的电催化剂界面具有重要意义。 

该研究不仅挑战了传统上认为AM+在水溶液中化学惰性的观点,而且为电催化界面设计的改进提供了新的思路,特别是在开发高性能的氧还原反应催化剂和金属-空气电池等领域具有广泛的应用前景。 

Ji, S.G., Kim, M.M., Han, M.H. et al. Alkali metal cations act as homogeneous cocatalysts for the oxygen reduction reaction in aqueous electrolytes. Nat. Catal., (2024).

 

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值