YOLOV4知识点分析(二)

本文深入分析了YOLOV4中的数据增强技术,包括mixup、cutmix及其扩展Mosaic策略,强调它们如何提升模型的分类和定位能力。此外,还探讨了Stylized-ImageNet数据集在减少纹理干扰、提高模型对形状关注的作用,以及DropBlock作为卷积网络正则化方法的原理和应用。
摘要由CSDN通过智能技术生成

YOLOV4知识点分析(二)

  1. 数据增强相关-mixup

论文名称:mixup: BEYOND EMPIRICAL
RISK MINIMIZATION

论文地址:https://arxiv.org/abs/1710.09412

mixup由于非常有名,大家都应该知道,而且网上各种解答非常多,故这里就不重点说了。

其核心操作是:两张图片采用比例混合,label也需要混合。

在这里插入图片描述

论文中提到的一些关键的Insight:

1 也考虑过三个或者三个以上的标签做混合,但是效果几乎和两个一样,而且增加了mixup过程的时间。

2 当前的mixup使用了一个单一的loader获取minibatch,对其随机打乱后,mixup对同一个minibatch内的数据做混合。这样的策略和在整个数据集随机打乱效果是一样的,而且还减少了IO的开销。

3 在同种标签的数据中使用mixup不会造成结果的显著增强
  1. 数据增强相关-cutmix和Mosaic

论文名称:CutMix: Regularization
Strategy to Train Strong Classifiers with Localizable Features

论文地址:https://arxiv.org/abs/1905.04899

开源地址:https://github.com/clovaai/CutMix-PyTorch

在这里插入图片描述

mixup相当于是全图融合,cutout仅仅对图片进行增强,不改变label,而cutmix则是采用了cutout的局部融合思想,并且采用了mixup的混合label策略,看起来比较make sense。

cutmix和mixup的区别是,其混合位置是采用hard 0-1掩码,而不是soft操作,相当于新合成的两张图是来自两张图片的hard结合,而不是Mixup的线性组合。但是其label还是和mixup一样是线性组合。作者认为mixup的缺点是:Mixup samples suffer from the fact that they are locally ambiguous

and unnatural, and therefore confuses the model, especially for localization。

在这里插入图片描述

M是和原图大小一样的矩阵,只有0-1值,用于控制线性混合度,通过参数可以控制裁剪矩形大小,

在这里插入图片描述

伪代码如下

在这里插入图片描述

而Mosaic增强是本文提出的,属于cutmix的扩展,cutmix是两张图混合,而马赛克增强是4张图混合,好处非常明显是一张图相当于4张图,等价于batch增加了,可以显著减少训练需要的batch size大小。

在这里插入图片描述

  1. 数据增强相关-Stylized-ImageNet

论文名称ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值