黎曼曲面Riemann Surface

黎曼曲面Riemann Surface
在这里插入图片描述
A Riemann surface is a surface-like configuration that covers the complex plane with several, and in general infinitely many, “sheets.” These sheets can have very complicated structures and interconnections (Knopp 1996,
pp. 98-99). Riemann surfaces are one way of representing multiple-valued
functions; another is branch cuts. The above plot shows Riemann surfaces for solutions of the equation

黎曼曲面是一种类似于曲面的结构,它覆盖了多个,通常是无限多个的“片”。这些片可以有非常复杂的结构和相互连接(Knopp 1996,pp.98-99)。Riemann曲面是表示多值函数(功能)的一种方法;另一种是分支切割。上图显示了方程解的黎曼曲面。
在这里插入图片描述
其中d=2, 3, 4, and 5, where w(z) is the Lambert W-function (M. Trott).

The Riemann surface S of the function field K is the set of non

黎曼曲面导引 出版时间:2013年版 丛编项: 北京大学现代数学丛书 内容简介   《黎曼曲面导引/北京大学现代数学丛书》介绍黎曼曲面的基本理论.对于一般黎曼曲面主要讨论单值化定理,对于紧致黎曼曲面则主要围绕Riemann-Roch公式的证明和应用展开讨论。全书共分五章,第一章介绍复分析中的一些预备知识并证明Riemann映照定理,第二章利用Perron方法给出单连通黎曼曲面的分类,即单值化定理,第三章给出Riemann-Roch公式的经典证明,并讨论这个公式的大量应用,第四章引入全纯线丛,层和层的上同调的概念,并利用这些概念重新将Riemann-Roch公式解释为一个指标公式.第五章讨论黎曼曲面以及全纯线丛上Hermite度量的几何性质,并介绍Hodge定理,对偶定理和消没定理.这些定理都可以推广到高维的复流形上.《黎曼曲面导引/北京大学现代数学丛书》结合了几何和分析的观点,语言简洁,内容丰富,适合自学.在引进抽象的概念时,往往辅以许多具体的实例来说明问题.掌握了黎曼曲面上的这些抽象概念以后读者可以自然地过渡到一般复流形的学习,同时,《黎曼曲面导引/北京大学现代数学丛书》可以作为研究复几何和代数几何相关领域的入门读物, 目录 第一章 Riemann映照定理 §1.1 Schwarz引理 §1.2 调和函数 §1.3 Riemann映照定理 第二章 单值化定理 §2.1 黎曼曲面的定义 §2.2 Poincare引理 §2.3 亚纯函数与亚纯微分 §2.4 Perron方法 §2.5 单值化定理 第三章 Riemann-Roch公式 §3.1 因子 §3.2 Hodge定理 §3.3 Riemann-Roch公式 §3.4 若干应用 §3.5 Abel-Jacobi定理 第四章 曲面与上同调 §4.1 全纯线丛的定义 §4.2 因子与线丛 §4.3 层和预层 §4.4 层的上同调 §4.5 上同调群的计算 §4.6 Euler数 第五章 曲面的复几何 55.1 Hermite度量 §5.2 线丛的几何 §5.3 线丛的Hodge定理 §5.4 对偶定理 §5.5 消没定理 §5.6 线丛的陈类 附录A 三角剖分和Euler数 附录B Hodge定理的证明 参考文献 名词索引
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值