TVM 各个模块总体架构

本文探讨了TVM深度学习框架的总体架构,从现有深度学习框架的局限性出发,介绍了学习型学习系统,特别是针对Tensor程序的优化问题。文章详细阐述了成本模型驱动的方法,包括统计成本模型、基于树和神经网络的程序感知建模,并讨论了跨设备的可转移成本模型。此外,还介绍了TVM如何通过Tensor Expression和优化搜索空间实现硬件感知,以及为TPU-like加速器设计的搜索空间。TVM的组件如 Relay 虚拟机、uTVM 和 TSIM 支持未来硬件和异构设备的统一运行时,确保了跨平台的高性能推理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TVM 各个模块总体架构

在这里插入图片描述
在这里插入图片描述

Deploy Deep Learning Everywhere
在这里插入图片描述

Existing Deep Learning Frameworks
在这里插入图片描述

Limitations of Existing Approach
在这里插入图片描述

Learning-based Learning System
在这里插入图片描述

Problem Setting
在这里插入图片描述

Example Instance in a Search Space
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Optimization Choices in a Search Space

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值