
1. 砷化镓-依赖频率的自旋霍尔电导率
- 概要:考虑到自旋-轨道耦合,计算砷化镓的交流(ac)自旋霍尔电导率。为了更好地理解这个例子,建议阅读参考文献[1]中对理论的详细描述和《用户指南》的第12.5章。
- 目录:examples/example30/
- 输入文件
– GaAs.nscf 在统一网格上获得Bloch状态的PWSCF输入文件
– GaAs.pw2wan pw2wannier90输入文件
– GaAs.win wannier90和postw90输入文件
【1】运行PWSCF以获得砷化镓的基态。
pw.x < GaAs.scf > scf.out
【2】运行PWSCF以获得统一k点网格上的Bloch状态
pw.x < GaAs.nscf > nscf.out
【3】运行wannier90,生成所需的重叠列表(写入GaAs.nnkp文件中)
wannier90.x -pp GaAs
【4】运行pw2wannier90来计算Bloch状态和初猜的投影之间的重叠(写在GaAs.mmn和GaAs.amn文件中)
pw2wannier90.x < GaAs.pw2wan > pw2wan.out
【5】运行wannier90计算MLWF
wannier90.x GaAs
【6】运行postw90
postw90.x GaAs (串行执行)
mpirun -np 8 postw90.x GaAs (8个MPI进程并行执行的例子)
交流自旋霍尔电导率
自旋霍尔电导率也与频率有关!在《用户指南》的公式(12.22)中。前面例子中计算的直流(dc)SHC对应于在极限ω→0,它是一个实数。在有限频率下,获得了一个虚数部分。
为了计算ħω到8eV的交流自旋霍尔电导率,请添加以下命令
shc_freq_scan = true
kubo_freq_min = 0.0
kubo_freq_max = 8.0
kubo_freq_step = 0.01
并重新运行postw90。文件GaAs-shc-freqscan.dat包含了计算的交流SHC。用250×250×250 k点的网格可以得到合理收敛的光谱。要绘制交流SHC,请执行以下命令
myshell> gnuplot
gnuplot> plot ‘GaAs-shc-freqscan.dat’ u 2:3 w l title ‘Re’, ‘GaAs-shc-freqscan.dat’ u 2:4 w l title ‘Im’
然后将结果与文献[1]中的图4进行比较。或“Solution Booklet”上的图4进行比较。
注
- 在计算交流SHC时,可以通过在GaAs.win中添加以下关键词来使用自适应“smearing”。
- 自适应kmesh精细化没有在交流SHC计算中实现。
- 通过使用以下关键词,前10个半核心状态被排除在计算之外
- 由于LDA/GGA经常会低估带隙,所以通过以下关键词,应用剪刀算符来校正实验带隙
2.铂-自旋体波函数的密度矩阵算法的选定列
注意:这个例子需要Quantum ESPRESSO的pw2wannier90.x后处理代码的最新版本(6.3版本或以上)。
- 概要:对于具有自旋-轨道耦合的块状结晶铂,通过密度矩阵的选定列(SCDM)算法和相应的自旋体-MLWF产生Amn矩阵。为了更好地理解这些计算的输入文件和结果,读者必须熟悉参考文献[18]中解释的概念和方法。更多与SCDM方法有关的关键词信息可以在用户指南中找到。
- 这个例子着重介绍了SCDM方法在自旋非共轭系统中的应用。关于SCDM方法在无自旋系统中的使用概况,请参考实例27。
- 目录:examples/example31/
- 输入文件
– Pt.nscf 在统一网格上获得Bloch状态的PWSCF输入文件
– Pt.pw2wan pw2wannier90的输入文件,包含与SCDM方法相关的关键词
– Pt.win wa
nnier90输入文件
我们将计算出18个局域的WF。由于铂的能带结构是金属性的,低能带与其他高能带纠缠在一起,密度矩阵的列在结构上不是指数级的局域化。因此,我们使用修改过的密度矩阵[18],函数f(εn, k)定义为互补误差函数。关于修正的密度矩阵的定义和f(εn, k)的函数形式,请参考例27。
【1】运行PWSCF以获得铂的基态。
pw.x < Pt.scf > scf.out
【2】在统一的7×7×7的k点网格上运行PWSCF来获得Bloch状态
pw.x < Pt.nscf > nscf.out
【3】检查Pt.win输入文件,确保auto_projections标志被设置为.true.。另外,确保没有投影块存在。
【4】运行wannier90,生成所需的重叠列表(写入Pt.nnkp文件中)
wannier90.x -pp Pt
【5】检查Pt.nnkp文件,确保能找到auto_projections模块,并且在projections模块中没有写入任何projections。
【6】检查Pt.pw2wan输入文件。会发现四个与SCDM有关的关键词:scdm_proj、scdm_entanglement、scdm_mu和scdm_sigma。特别是,关键字scdm_proj将指示pw2wannier90.x在生成Amn矩阵时使用SCDM方法。其余三个关键词定义了函数f(εn, k)的公式和参数(见文献[2]和例子27)。
【7】运行pw2wannier90来计算Bloch状态和通过SCDM方法的投影之间的重叠(分别写在Pt.mmn和Pt.amn中)。
pw2wannier90.x < Pt.pw2wan > pw2wan.out
【8】检查pw2wan.out输出文件。与无自旋的情况相比,会发现以下两行额外的内容
Number of pivot points with spin up : 9
Number of pivot points with spin down: 9
这些内容给出了关于SCDM算法中列的QR分解(QRCP)所获得的中心点的信息。每个中心点决定了实空间网格中的一个点和一个自旋状态。自旋态的基础是由电子结构代码中使用的基础决定的。在PWSCF中,基态是沿笛卡尔Z轴的自旋上升和下降状态。
【
9】运行wannier90计算MLWF
wannier90.x Pt
参考文献
[1] J. Qiao, J. Zhou, Z. Yuan, and W. Zhao, Phys. Rev. B 98, 214402 (2018).
[2] A. Damle and L. Lin, ArXiv e-prints (2017), 1703.06958 .