应用机器学习分析镁合金孪晶形核

研究人员通过电子背散射衍射分析了镁合金中拉伸变形时的孪晶形核,利用28个相关参数训练机器学习模型,发现晶粒大小、施密德因子和邻近晶粒特性对孪晶形成有显著影响,揭示了多体关系在抑制不利孪晶中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

镁(Mg)及其合金因其轻质、高强度重量比、良好的可回收性,成为了交通运输中结构组件的候选材料,且由于其可生物降解和相容性行为,在生物医学也应用广泛。


67040ed817f843d04a6934e4a603c866.jpeg

Fig. 1 Microstructures of AZ31 Mg and Mg-1Al alloys before deformation.


然而,孪晶变形导致了纹理镁合金的拉伸和压缩屈服强度以及工作硬化之间的显著差异,这种明显的塑性各向异性对锻制镁合金的延展性和成形性产生了负面影响。通过孪晶来实现塑性变形,包括两个连续步骤:孪晶核形成和孪晶生长(增厚)。

c208f1e8920dfd42f5a7c288bd525274.jpeg

Fig. 2 Mechanical behavior of Mg alloys.


孪晶核形成是一种异质过程,发生在微观结构中应力集中的区域。一旦孪晶体形成,通常认为孪晶体增厚是由孪晶位错沿着孪晶面滑移介导的,而这一过程受到了孪晶面和方向上的解析剪应力的控制。从多晶体角度来看,用于解释单个晶粒中孪晶核形成的最常见标准是表观施密德因子(SF),其基于单个晶粒内的应力状态与宏观应力相同这一假设。


7d1c5e981d61a71cac1dd163ce4e31db.jpeg

Fig. 3 Schematic of the microstructural features considered in the ML models.


然而,最近的许多研究揭示,除了SF之外,其他微观结构特征也对孪晶核形成具有显著影响。因此,目前对导致孪晶核形成的潜在因素仍无共识,因为孪晶的生长不一定只发生在大晶粒、晶界或有有利取向的晶粒中。


内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值