面向机器学习的材料数据:进展与挑战

本文探讨了机器学习在材料科学中的应用,聚焦于材料数据的产生、存储和表征进展,以及面临的5V和3M挑战。作者强调了数据增强、多尺度研究、计算与实验数据融合的重要性,并提出了解决方案,如因果机器学习,以推动材料科学的进一步发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3b913eda6cc0d4ee5bfea1acd23c49fa.jpeg

英文原题:Materials Data toward Machine Learning: Advances and Challenges

19cc869f42c5c4403a7ccbfc717eab17.jpeg

通讯作者:孙志梅,北京航空航天大学

作者:祝令刚,周健


背景和概要

机器学习驱动了材料科学研究范式的迭代。在材料的快速发现以及自主化智能实验室建立方面,机器学习已展现出巨大的变革能力。机器学习应用于材料科学已有大量的研究论文和综述报道,本文以机器学习的“原料”--材料数据问题为切入点,探讨如何进一步释放机器学习加速材料研发的巨大潜力。首先,本文总结了材料数据的高通量产生、标准化存储以及面向机器学习的数据表征方面的最新进展。接着,着重展望了未来材料数据问题的挑战

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值