英文原题:Materials Data toward Machine Learning: Advances and Challenges
通讯作者:孙志梅,北京航空航天大学
作者:祝令刚,周健
背景和概要
机器学习驱动了材料科学研究范式的迭代。在材料的快速发现以及自主化智能实验室建立方面,机器学习已展现出巨大的变革能力。机器学习应用于材料科学已有大量的研究论文和综述报道,本文以机器学习的“原料”--材料数据问题为切入点,探讨如何进一步释放机器学习加速材料研发的巨大潜力。首先,本文总结了材料数据的高通量产生、标准化存储以及面向机器学习的数据表征方面的最新进展。接着,着重展望了未来材料数据问题的挑战