清华大学,最新Nature

最近发现的La3Ni2O7−δ在高压下,在80 K左右的转变温度下的超导性引发了广泛的实验和理论努力。

关于配对机制的几个关键问题仍有待回答,例如最相关的原子轨道和原子缺陷的作用。

在此,来自南京大学的卢毅&中山大学的王猛&清华大学和合肥国家实验室的王亚愚&中国科学院物理研究所和中国科学院大学的Zhen Chen等研究者开发了一种新的能量过滤的且多层电子平面摄影技术,辅以电子能量损失谱,来解决这些关键问题。相关论文以题为“Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7−δ”于2024年06月05日发表在Nature上。

  154e4f57cabec1dfc2e4a749f2cda39e.jpeg 作为铜酸盐的类似物,镍酸盐作为高温超导材料已经有20多年的历史了。第一个镍酸盐超导体,空穴掺杂无限层RNiO2 (R代表稀土元素),在环境条件下达到了20 K左右的转变温度(Tc),在压力下达到了31 K。

近年来,在高压下发现了标称Ruddlesden-Popper (RP)相化合物La3Ni2O7的高温超导性,起始温度为Tc≈80 K。在La3Ni2O7中,电子计数表明,Ni的三维电子形成半填充的3{d}_{{z}^{2}}带和1 / 4填充的3{d}_{{x}^{2}-{y}^{2}}带。 

因此,从理论上提出了层间超交换的重要性,它涉及到强相关的Ni 3{d}_{{z}^{2}}电子通过连接每个单元胞内两个相邻NiO2平面的内顶氧2pz轨道的虚跳。根据这张图,在这个位置上少量的缺氧可以抑制超导性。

然而,在实验上,表征像O这样的轻原子一直具有挑战性,特别是要实现其空位的定量分析。使用扫描透射电子显微术(STEM),传统的方法,如高角度环形暗场(HAADF)成像,无法可视化氧原子。

因此,集成差分相衬(iDPC)和环形亮场(ABF)技术被广泛应用于氧成像。然而,iDPC成像依赖于相位目标近似,这只适用于薄样品,而ABF图像中的响应不是线性依赖于投影中的原子数,这阻碍了它在定量原子空位方面的应用。

最近发展起来的相位恢复技术——多层电子平面图(MEP),可以克服这些限制,甚至可以提供沿光束传播深度维度的分辨率。这是通过对电子束在样品传输函数的相位和振幅中的多重散射问题的反解来实现的,其中相位是原子的静电势乘以常数。

因此,沿深度尺寸的总和相与样品厚度和每个原子柱内的原子数成线性比例。因此,与没有缺陷的位点相比,原子缺陷位点可以通过其相位的减少来识别和量化(以下表示为“对比”)。

然而,这种应用依赖于相位值的精确量化,并且尚未在实验中实现。此外,MEP可以有效地与同一区域的互补技术相结合,用于原子分辨率光谱分析,如电子能量损失光谱(EELS)。这使得O空位的数量与费米能量以上的电子结构之间存在直接关联。

在这里,研究者使用一种改进的方法能量过滤MEP,来直接观察La3Ni2O7−δ中氧空位的分布,发现它们主要位于内层顶端。在O-K边缘对应的EELS结果表明,自掺杂配体空穴的密度相当大,因此具有很强的p-d杂化。

研究者确定了La3Ni2O7−δ在检查区域内的精确值,并观察到由于氧空位引入掺杂电子而导致配体空穴的显著湮灭。这使得La3Ni2O7−δ在Zaanen-Sawatzky-Allen方案中更接近电荷转移体制,而超导无限层镍酸盐则处于相反的Mott-Hubbard体制。研究者还证明了配体空穴主要占据内层顶端氧和面氧,而掺杂电子几乎均匀地分布在这两个配体上。

  1baff461aaa2f2b7f3218ea499deea6f.jpeg图1 MEP的实验设置及测定O含量的模拟。 3731f08b14cb3bf88cf989920005b07a.jpeg图2 La3Ni2O7−δ中氧空位的实验可视化和统计。

847ccd880ecd026342b6b747d3690f56.jpeg图3 La3Ni2O7−δ的O K-边EELS和空位分布。

0f2dd769f1556e7e9470165fed95c3b0.jpeg图4 原子分辨EELS和配体孔在每个单胞内的分布。

综上所述,研究者提出了能量过滤MEP和EELS的联合研究,以揭示配体氧在La3Ni2O7−δ中的作用。

非化学计量氧空位主要位于内根尖位置,并表现出较大的空间波动。MEP对氧空位的定量分析使得EELS分析了掺杂依赖的电子结构,揭示了La3Ni2O7具有强的电荷转移特性,具有自掺杂配体空穴。

在每个单胞内,配体空穴只在内层的顶端和面氧上突出,而由O空位引入的附加电子载流子也均匀分布在这两个位点上。需要进一步的理论和实验研究来确定其超导相在压力下可能的配对机制。

此外,MEP确定原子缺陷含量的能力为材料科学的广泛应用铺平了道路。 

【参考文献】

Dong, Z., Huo, M., Li, J. et al. Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7−δ. Nature (2024). https://doi.org/10.1038/s41586-024-07482-1

 

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值