Nature Catalysis:机器学习大综述,数据科学加速催化研究进程

40d0d87dd6c9bbcb456caab60f334284.jpeg研究背景

数据科学和机器学习(ML)在催化领域早有应用,但当时预测算法仅被用于建立各种催化反应的定量构效关系(QSPR)。直到最近50年,催化界才更广泛地采用数据驱动方法(图1a)用于研究。而在最近十年间,催化研究广泛利用数据科学概念(数据科学通过一系列分析技术(如统计推断、可视化等)为理解数据提供了基础和背景)来助力催化研究进程。

近期,苏黎世联邦理工学院Javier Pérez-Ramírez等人全面回顾催化研究者如何利用数据驱动策略来解决异相、均相和酶催化的复杂挑战,强调了该领域的前沿以及催化子学科之间的知识迁移,揭示了催化实验在数据探索方面的差距,指出数据科学的四大支柱(描述性、预测性、因果性和规范性分析)能弥补这一差距。最后,作者提倡在实验中采用数据科学方法和数据标准化来促进数字催化的研究。

研究亮点

1、作者对2013-2023年期间的同质、异质和酶催化进行了系统的文献检索,并以数据驱动策略解决催化相关问题的不同类型,最后,作者将所有研究分为演绎型或归纳型。

2、作者提倡催化研究人员对数据驱动概念和策略要有基本了解,但数据驱动不会取代人类的直觉或专业知识。在可预见的未来,数据科学将集成到催化研究中,加速实验设计、数据分析和新知识的创造。

图文导读

通过总结众多的文献报道,作者确定了催化研究中数据驱动方法的两个主要目标。一种是通过绘制结构-性质-性能关系图来验证假设,实现演绎研究。第二种方法需要确定描述符,以便通过可解释的ML模型阐明性能。这些研究的重点是通过揭示性能与性质或性质与结构之间的关系来建立新的理论,称之为归纳研究(图1b)。这些系统性的文献分析以及将催化反应归类为演绎(或归纳方法)的通用模式,为研究提供了一个全新的平台,让人们能够深入了解数据驱动催化研究的全貌(图1c

<think>好的,用户想找用于化学产率预测的数据集下载。首先得确定化学产率预测常用的数据集有哪些。可能需要搜索相关的学术论文或者开源数据平台。比如,ACS、Nature这些期刊可能有相关数据集。另外,Kaggle、Zenodo、Figshare这些平台也可能有用户上传的数据。 记得用户需要的是可以直接下载的数据集,所以得确保提到的资源是公开可访问的。可能需要检查每个数据集的获取方式,是否需要注册或者申请权限。比如,USPTO数据库可能需要注册,而Kaggle的数据集通常可以直接下载。 另外,化学产率预测可能涉及不同的反应类型,比如有机合成、催化反应等,所以数据集是否有细分领域的信息也很重要。比如哈佛的开放数据可能有特定类型的反应数据,需要说明清楚。 还要注意数据集的格式,是否有结构化的数据如CSV、Excel,或者包含SMILES表示等,这对用户的使用体验很重要。比如Open Reaction Database的数据是以SMILES和反应条件为主,用户可能需要处理这些格式。 最后,生成相关问题时要围绕用户的需求,比如数据预处理方法、机器学习模型的应用、特定反应类型的数据集等,这些都是用户可能会进一步询问的方向。</think>针对化学产率预测的数据集需求,以下整理了多个公开可用资源及其下载方式: **1. USPTO公共反应数据集** 美国专利局发布的化学反应数据集包含超过200万条反应记录,包含产率、反应条件等字段。数据通过[哈佛清洁能源项目](https://cepdb.molecularspace.org/)或[Figshare平台](https://figshare.com/articles/dataset/Chemical_reaction_data_from_US_patents/5104873)获取。数据格式为SMILES字符串与JSON元数据。 **2. Open Reaction Database** 开放反应数据库提供超10万条实验验证的有机反应数据,包含产率、温度、催化剂等参数。支持通过[官方网站](https://docs.open-reaction-database.org/)批量下载CSV文件或API访问。数据集包含标准化反应SMILES与条件编码: ```python # 示例数据字段 { "reactants": "CCO.CC(=O)O", "products": "CC(=O)OCC", "yield": 85.2, "temperature": 120 } ``` **3. Kaggle化学数据集** Kaggle平台包含多个产率预测相关数据集: - [有机合成产率预测](https://www.kaggle.com/datasets/...) - [催化反应数据集](https://www.kaggle.com/datasets/...) 支持直接下载CSV格式,包含特征工程处理后的数值型特征。 **4. NIST化学动力学数据库** 美国国家标准与技术研究院提供的气相/液相反应动力学数据,可通过[NIST Chemistry WebBook](https://webbook.nist.gov/chemistry/)检索后导出。数据包含Arrhenius方程参数: $$k = A \cdot e^{-E_a/(RT)}$$ **5. 文献补充数据集** 《Nature Communications》《ACS Catalysis》等期刊论文的补充材料常包含产率数据。通过对应论文的Supporting Information部分获取,需注意引用规范。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值