最新Nature子刊:计算化学+机器学习,确定最佳催化剂结构

5146bc708ceb17d02a7435d6b6a77239.jpeg

第一作者:Yusei Hisata

通讯作者:Yoichi Hoshimoto

通讯单位:日本大阪大学

论文速览

在合成化学领域,基于化学信息学的机器学习(ML)已被用于确定最佳反应条件,包括催化剂结构。然而,在使用路易斯酸性主族元素的催化分子转化的背景下,这种以ML为重点的策略在很大程度上仍未被探索,这可能是由于缺乏候选库和预测主族元素活性的有效指导方针。

本研究利用基于化学信息学的机器学习(ML)方法,优化了合成化学中的反应条件,包括催化剂结构。研究团队构建了一个三芳基硼烷的计算机模拟库,并应用ML辅助方法,确定了最佳的硼烷催化剂B(2,3,5,6-Cl4-C6H)(2,6-F2-3,5-(CF3)2-C6H)2 ,该催化剂在4-甲基四氢吡喃存在下对苯胺衍生的氨基酸和肽与醛和氢气催化还原烷基化,表现出显著的官能团兼容性,并且仅生成水作为副产品。

图文导读

分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代码示例不仅展示了理论知识在
<think>好的,用户想找用于化学产率预测的数据集下载。首先得确定化学产率预测常用的数据集有哪些。可能需要搜索相关的学术论文或者开源数据平台。比如,ACS、Nature这些期可能有相关数据集。另外,Kaggle、Zenodo、Figshare这些平台也可能有用户上传的数据。 记得用户需要的是可以直接下载的数据集,所以得确保提到的资源是公开可访问的。可能需要检查每个数据集的获取方式,是否需要注册或者申请权限。比如,USPTO数据库可能需要注册,而Kaggle的数据集通常可以直接下载。 另外,化学产率预测可能涉及不同的反应类型,比如有机合成、催化反应等,所以数据集是否有细分领域的信息也很重要。比如哈佛的开放数据可能有特定类型的反应数据,需要说明清楚。 还要注意数据集的格式,是否有结构化的数据如CSV、Excel,或者包含SMILES表示等,这对用户的使用体验很重要。比如Open Reaction Database的数据是以SMILES和反应条件为主,用户可能需要处理这些格式。 最后,生成相关问题时要围绕用户的需求,比如数据预处理方法、机器学习模型的应用、特定反应类型的数据集等,这些都是用户可能会进一步询问的方向。</think>针对化学产率预测的数据集需求,以下整理了多个公开可用资源及其下载方式: **1. USPTO公共反应数据集** 美国专利局发布的化学反应数据集包含超过200万条反应记录,包含产率、反应条件等字段。数据通过[哈佛清洁能源项目](https://cepdb.molecularspace.org/)或[Figshare平台](https://figshare.com/articles/dataset/Chemical_reaction_data_from_US_patents/5104873)获取。数据格式为SMILES字符串与JSON元数据。 **2. Open Reaction Database** 开放反应数据库提供超10万条实验验证的有机反应数据,包含产率、温度、催化剂等参数。支持通过[官方网站](https://docs.open-reaction-database.org/)批量下载CSV文件或API访问。数据集包含标准化反应SMILES与条件编码: ```python # 示例数据字段 { "reactants": "CCO.CC(=O)O", "products": "CC(=O)OCC", "yield": 85.2, "temperature": 120 } ``` **3. Kaggle化学数据集** Kaggle平台包含多个产率预测相关数据集: - [有机合成产率预测](https://www.kaggle.com/datasets/...) - [催化反应数据集](https://www.kaggle.com/datasets/...) 支持直接下载CSV格式,包含特征工程处理后的数值型特征。 **4. NIST化学动力学数据库** 美国国家标准与技术研究院提供的气相/液相反应动力学数据,可通过[NIST Chemistry WebBook](https://webbook.nist.gov/chemistry/)检索后导出。数据包含Arrhenius方程参数: $$k = A \cdot e^{-E_a/(RT)}$$ **5. 文献补充数据集** 《Nature Communications》《ACS Catalysis》等期论文的补充材料常包含产率数据。通过对应论文的Supporting Information部分获取,需注意引用规范。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值