第一作者:Yusei Hisata
通讯作者:Yoichi Hoshimoto
通讯单位:日本大阪大学
论文速览
在合成化学领域,基于化学信息学的机器学习(ML)已被用于确定最佳反应条件,包括催化剂结构。然而,在使用路易斯酸性主族元素的催化分子转化的背景下,这种以ML为重点的策略在很大程度上仍未被探索,这可能是由于缺乏候选库和预测主族元素活性的有效指导方针。
本研究利用基于化学信息学的机器学习(ML)方法,优化了合成化学中的反应条件,包括催化剂结构。研究团队构建了一个三芳基硼烷的计算机模拟库,并应用ML辅助方法,确定了最佳的硼烷催化剂B(2,3,5,6-Cl4-C6H)(2,6-F2-3,5-(CF3)2-C6H)2 ,该催化剂在4-甲基四氢吡喃存在下对苯胺衍生的氨基酸和肽与醛和氢气催化还原烷基化,表现出显著的官能团兼容性,并且仅生成水作为副产品。
图文导读