CDKF、UKF和EKF滤波算法

本文介绍了EKF、UKF和CDKF三种滤波算法在TSLAM室内定位中的应用。EKF虽然高效,但存在计算复杂、精度损失和鲁棒性不足等问题。UKF适用于低维问题,而CDKF通过中心差分克服了EKF的缺点,提供更高精度和更低的线性化误差,尤其适合高维系统的滤波。因此,TSLAM9.0选择了CDKF作为滤波方案之一。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载自:https://mp.weixin.qq.com/s/umv72zAB-i3luzyIvXpvYw

CDKF、UKF和EKF滤波算法

凌拓智能TBUS TBUS社区 今天

之前一直和大家探讨在TSLAM室内定位算法中,我们tiny_EKF与CDKF滤波算法的运用,这次就和大家唠唠CDKF、UKF、EKF这几种滤波算法。

 

    大家都知道,EKF即扩展卡尔曼滤波,是一种高效率的递归滤波器(自回归滤波器),这也是大家平时经常接触到的。优点在此我就不多说了,这里说一下在实际应用中的不足:

 

  • 需要计算非线性模型的雅克比矩阵,计算大,易出错,难得到;

  • 忽略高阶项,估计精度大受影响;

  • 模型不确定性的鲁棒性很差;

  • 在系统达到平稳状态时,将丧失对突变状态的跟踪能力;

  • 如果系统的误差传播函数不能很好的用线性函数来逼近,可能会导致滤波器发散。

 

    针对EKF的不足,出现了一套全新的非线性滤波方法,即Sigma-Point卡尔曼滤波(sigma point kalman filter),其利用加权统计线性化回归技术(WSLR),通过一组确定性采样点(Sigma点)来捕获系统的相关统计参量。根据Sigma点选取的不同,其主要分为Unscented卡尔曼滤波(UKF)和中心差分卡尔曼滤波(CDKF)。

 

    UKF:即无迹卡尔曼滤波。是无损变换(UT) 和标准Kalman滤波体系的结合,它是利用无损变换使线性假设下的卡尔曼滤波应用于非线性系统。但是,如果你google其实你会发现,ukf只适合处理1-3维变量的问题,大于3维非常不稳定,但是由于C国写论文做验证的,一般都只拿1维变量做测试。但是,在实际工程中是不可能小于3维变量的。

 

    CDKF:即中心差分卡尔曼滤波。CDKF滤波算法的优势在于它克服了EKF方法的缺点,滤波时不需要系统模型的具体解析形式,并充分考虑了随机变量的噪声统计特性,具有比EKF更小的线性化误差和更高的定位精度,它对状态协方差的敏感性要低得多,且逼近速度快于UKF。CDKF的出发点是借助sterling插值公式,用多项式逼近非线性方程的导数,从而避免复杂的求导运算,它采用中心差分代替Talor展开中的一阶和二阶导数。

 

由此,TSLAM9.0的这次升级中,我们才选用了CDKF为可选的滤波方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值