全局视觉定位

本文介绍了全局视觉定位在自主机器人和自动驾驶中的重要性,探讨了基于特征点的全局定位算法,包括图像描述、建图查询、特征匹配和位姿计算四个关键技术。特征点提取涉及SIFT和二值描述子,数据库建立与查询使用VLAD和BoW编码。特征匹配利用RANSAC算法去除外点,位姿计算则涉及P3P等方法。文章强调了传统方法的挑战和深度学习在定位领域的未来应用前景。
摘要由CSDN通过智能技术生成

全局视觉定位

  1. 引言

自主机器人是机器人研究的重点方向,定位和导航是自主机器人研究的核心问题。机器人在执行任务过程中需要确定自身当前位置,根据目标位置和当前位置之间的关系计算如何到达目的地完成任务,其中前者要解决的是自定位问题,后者是导航问题,本文主要研究前者。基于视觉的定位技术还能帮助盲人、视弱以至普通人确定自身位置。
环境模型是定位的基础。基于模型的定位方法包括基于环境三维模型和基于拓扑地图的定位方法。环境三维模型的建模过程非常复杂,特别是在室外的场景中建模可能遇到极大的困难。拓扑定位用图的形式来表示环境模型,其中图中的节点表示环境中的地点,连接节点的边表示地点之间的联系,拓扑定位目的是确定机器人当前的位置与地图中的哪个节点最近,也就是机器人处于哪个地点。

在无人驾驶中,感知、定位、规划决策、控制是四个基本的系统模块。由于当前算法还无法实现绝对的智能,因此依然需要大量的先验知识来提高模块性能、鲁棒性,以实现安全的自动驾驶。其中,高精地图是对道路及周边环境先验知识的集成。而建立在地图之上的准确定位,是判断行车状况的重要依据,为后续的感知、规划决策提供有力支撑。

用于定位的主要数据源目前主要有 GPS、激光雷达、视觉、毫米波雷达。对于视觉而言,虽然目前还没有一套产业内公认的足够可靠的定位方案,但是在这方面探索从未停止过,主要原因如下:

安全性是无人驾驶系统最重要的指标,因此大部分功能的实现,都是多源数据、不同算法结果的耦合。没有哪种传感器方案是完美的,比如 GPS RTK 作为广泛使用的方案,容易受卫星状况、天气状况、 数据链传输状况影响,在隧道内、室内和高楼密集区无法使用。再者,激光雷达虽然具有运算量小,提供深度信息,不受光照影响等优点,但信息稀疏,造价目前还十分昂贵,还不具备大批量车辆装配能力。相比较而言,摄像头提供的视觉信息,虽然会受到光照、天气影响,但是成本低,内容丰富,是目前辅助驾驶方案主要数据源,在地图定位方面也具有很大潜力。

由于主流基于视觉定位算法的核心思想一脉相承,所以本文仅从一系列重要算法框架组件角度,介绍了目前实践中最常用的、基于特征点的全局定位算法,即在地图坐标系下进行定位。本文省略了其中涉及到的优化、几何约束公式推导,旨在给同学们一个定位算法的宏观介绍,具体细节可以参考相关文献和书籍。

  1. 基于特征点的全局定位算法视觉全局定位,指的是根据当前图像,求出相机在地图坐标系中的 6 个自由度 (Degree of freedom, DoF) 位姿 (Pose) , 即 (x, y, z) 坐标,以及环绕三个坐标轴的角度偏转 (yaw, pitch, roll) 。目前主要可以分类为基于 3D 结构的方法、基于 2D 图像的方法、基于序列图像的方法、基于深度学习的方法。其中,基于深度学习的方法属于端到端 (End-to-end) 的方法,而其它多阶段 (Multi-stage) 非端到端方法虽然流程有所差别,但算法思路大都如 Fig. 1 所示:
    在这里插入图片描述

Figure 1: 根据查询图像,计算 2D-3D 转换矩阵,求解相机位姿

基于已建的地图,匹配历史中最相似的地图子集(图像/点云/特征点),根据匹配到的地图子集所提供的历史位姿真值、特征点坐标真值,计算点对间的变换矩阵,求解当前相机位姿。

所以,其核心包含图像描述、建图查询、特征匹配,位姿计算四个方面。这里仅仅是技术层面的宏观分类,实际算法框架不一定按照此顺序执行,而学者在研究中主要针对这些技术进行改进。整体而言,基于特征点的图像描述基本成熟,发展较少。而位姿计算由于是基于几何约束的优化问题,所以方法也较为固定。相对地,建图查询和特征匹配中改进技术较多。根据数据源不同,建图查询、匹配可以是2D-2D,2D-3D,3D-3D。2D 图像由相机得到,3D 点云可以由提供深度的双目相机、RGB-D 相机产生。

2.1 特征点提取

2D 图像本身是一个由亮度、色彩组成的矩阵,对视角、光照、色调变化等很敏感,直接使用十分困难。所以,一般会使用具有代表性的点进行相关计算。人们希望这样的点具有旋转、平移、尺度、光照不变性等优点。这些点称为图像的特征 (Feature) 点,包含关键点(Key-points) 和描述子 (Descriptor) 两部分。关键点表达了特征点的位置,而描述子则是对于特征点视觉特性的描述,大多为向量形式。一般而言,描述子主要是以某种模式,统计关键点周围的灰度/色彩梯度变化。一种鲁棒的描述子,在不同图像 的不同情况下,同一特征点的描述子的距离
(Distance) 应当较小。

描述子一般是人为手工设计的
(Hand-crafted features) 。经典的描述如 HOG(Histogram of
oriented gradients)[1],SIFT(Scale-invariant feature
transform)[2],SURF(Speeded up robust features)[3],AKAZE(Accelerated KAZE)[4] 等。

为了实时性的要求,一些计算速度更快的二值模式描述子被设计出来,如 LBP(Local binary patterns)[5],BRIEF(Binary
robust independent elementary features),ORB(Oriented
FAST and rotated BRIEF)[6],BRISK(Binary robust
invariant scalable key-point)[7],FREAK(Fast retina
key-point)[8] 等。

在深度学习流行之前,这些手工特征一直引领着整个计算视觉产业,直到今天,这些特征在那些缺少标注数据、约束较多的场景下,依然被广泛应用。下面简单介绍两类常用的描述子。

2.1.1 SIFTSIFT 描述子可以算是 CV 界最具影响力的技术之一。从关键点检测层面,主要使用高斯差分 (Difference of Gaussian, DoG) 方法检测多尺度空间上的极值点,作为关键点。而 Babaud 等人 [9] 证明了高斯平滑是唯一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值