特斯拉FSD技术解析

特斯拉FSD技术逐步实现全自动驾驶,通过不断迭代和大规模数据收集,提升了驾驶安全性和效率。FSD的纯视觉方案证明了其在处理驾驶场景中的有效性,而Dojo超级计算机将进一步提升数据处理能力。尽管FSD仍处于测试阶段,但其在自动驾驶领域的领先地位不容忽视,特斯拉有望在2022年实现比人类驾驶员更安全的FSD功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

特斯拉FSD技术解析
特斯拉疯狂进化的FSD
特斯拉的FSD Beta9(完全自动驾驶测试版9.0)已经在美国开始了全面推送,这标志着特斯拉已经正式迈入了全自动驾驶时代,虽然还不能做到老司机一样完美处理各种情况,但确实已经可以在任何道路上自动驾驶了。
FSD的测试版已经更新到了第9版,随着越来越多的车主加入进来,势必会加快FSD的迭代速度,相信用不了两年,特斯拉的FSD正式版就可以开始推送。
参考文献链接
https://mp.weixin.qq.com/s/Gsubp_cOHylzcFgSB6bZHg
https://mp.weixin.qq.com/s/1kcKd-r9OX0vams4dNMPTQ
特斯拉的解题思路
第一步,通过造好车、卖好车,形成可持续的商业模式,然后将盈利用于研发创新;第二步,以创新成果点燃整个行业的热情,带动更多厂商研发制造高品质的纯电动智能汽车,形成产业创新;
第三步,最终让可持续能源的世界加速到来,为人们创造更美好的生活。
在这里插入图片描述

“消灭”交通事故
调查显示,全球每天有3万余人死于交通事故。对于“好车”的概念,或许每个人都略有不同,但是都必须基于相同的基础之上,那就是安全。被动安全方面,特斯拉车型有着车身结构带来的先天安全优势。由于没有发动机,特斯拉车型前方自带吸能溃缩区,能在意外中有效保护乘员;钢铝混合轻量车身、坚固的底盘防护、大量高强度钢和超高强度钢的应用,打造固若金汤的安全防护。在最新的美国国家公路交通安全管理局(NHTSA)碰撞测试中,特斯拉全系车型均获得五星碰撞安全评级。其中,Model 3不仅获得NHTSA全五星安全评级、ENCAP全五星评级,还摘得了IIHS SAFETY PICK+顶级安全大奖。在美国政府的“新车评价项目”中,Model 3比其测试的任何车辆受伤概率都低。在事故的预防方面,则有全系标配的主动安全配置守护。每辆特斯拉车型,均有侧撞预警、盲点碰撞警报、前撞预警、速度限制警报、障碍物感应限速、自动紧急制动、车道偏离防避等功能。在此基础上,特斯拉还提供主动巡航控制、辅助转向、自动变道、辅助驾驶导航等功能,车辆预知风险、预判后,系统能够自主实施转向、制动等决策,尽量避免事故的发生。以Model 3为例,当在并入的临近车道中探测到车辆时,Autopilot便会触发侧撞预防功能(转向干预),并保障车辆自动转向行驶到一个更安全的位置。主动安全系统+Autopilot,带来的安全性提升是立竿见影的。NHTSA公布的最新数据显示,在美国每行车674万公里,平均会发生8.66次事故。而这个数据,在使用了Autopilot的特斯拉车主中仅为1次;没有使用Autopilot但有主动安全功能参与的驾驶中,事故约为2次。也就是说,特斯拉的Autopilot让行车安全水平达到平均水平的8.66倍。
在这里插入图片描述

特斯拉2021年第一季度车辆安全报告
另外,对于交通,特斯拉的愿望不只是降低事故率,还有解决“浪费”问题。目前,全世界的交通资源被严重的浪费,而罪魁祸首就是“堵车”。根据官方数据统计,全世界每天有500多万小时被浪费在交通堵塞上,占用道路面积达1700平方公里,因此,全自动驾驶就成了更高效使用交通资源的最佳方式。
详解特斯拉FSD学习逻辑
FSD成长秘诀:硬件+软件+数据一个没有交通事故和拥堵的世界,听起来不太现实。不过,特斯拉以目前最接近量产、最现实、最能大范围适配的自动驾驶技术,正让这个愿望逐渐落地。特斯拉的芯片已经经过3次迭代,目前最新的Full Self-Driving Computer上搭载了特斯拉自主研发的两枚芯片,也就是Autopilot 3.0硬件,性能比2.5版本芯片强大21倍。
在这里插入图片描述

不同芯片针对环境都拥有不同的指令算法特征,简而言之,有自己的特长。AI芯片,在图像识别等领域有着独特优势,其计算方式为矩阵或vector的乘法、加法,配合一些除法、指数等算法。而CPU则适合于不同领域的复杂算法,比如计算机服务器领域;GPU虽然也是针对图像渲染的算法,但其特性不符合神经网络。特斯拉研制的FSD芯片中,其中NNA(NPU)处理器即是为AI算法而存在的。
在这里插入图片描述

2017年8月,FSD芯片设计完成2017年12月,第一次试验芯片并成功2018年4月,测试并改进芯片2018年7月,获得量产合格2018年12月,设备装车并测试成功2019年3月,Model S和Model X生产线安装FSD芯片2019年4月,Model 3生产线安装FSD芯片
相较于HW2.5,FSD电脑将算力提升至了144TOPS,每秒处理的图片速度提升至2300帧。
在这里插入图片描述

算力的大幅提升,目的在于处理海量的图像信息,特斯拉的自动驾驶辅助系统之所以能够快速迭代和提升体验,就在于通过各类不常见但仍可能存在的“边角案例”情况,再通过(神经网络)深度学习让系统能够处理越来越多的驾驶场景。深度学习,简单来说就是通过硬件模拟人类大脑神经网络系统学习机制的一种学习方式,类似于人们对于外界事物逐渐熟悉和学习的过程。特斯拉通过不断输入数据,人工或自动标注出正确“答案”,令其不断自“进化”,从而快速提供识别率,进而不断覆盖所有的驾驶场景。
在这里插入图片描述

特斯拉会自动识别物体,包括路标、路牌、车道线、红绿灯、马路牙子、桩桶、行人、自行车、电动车、摩托车、猫、狗、船等近60亿件物体

每当车辆在遇到各类“边角案例”时,也就是遇到一些比较“棘手”的驾驶场景,或驾驶员的操作与系统“预想”操作不一致时,车辆都会脱敏匿名将实际情况上传给特斯拉云端服务器ÿ

function Y = fuse_fsd(M1, M2, zt, ap, mp) %Y = fuse_fsd(M1, M2, zt, ap, mp) image fusion with fsd pyramid % % M1 - input image A % M2 - input image B % zt - maximum decomposition level % ap - coefficient selection highpass (see selc.m) % mp - coefficient selection base image (see selb.m) % % Y - fused image % (Oliver Rockinger 16.08.99) % check inputs [z1 s1] = size(M1); [z2 s2] = size(M2); if (z1 ~= z2) | (s1 ~= s2) error('Input images are not of same size'); end; % define filter w = [1 4 6 4 1] / 16; % cells for selected images E = cell(1,zt); % loop over decomposition depth -> analysis for i1 = 1:zt % calculate and store actual image size [z s] = size(M1); zl(i1) = z; sl(i1) = s; % check if image expansion necessary if (floor(z/2) ~= z/2), ew(1) = 1; else, ew(1) = 0; end; if (floor(s/2) ~= s/2), ew(2) = 1; else, ew(2) = 0; end; % perform expansion if necessary if (any(ew)) M1 = adb(M1,ew); M2 = adb(M2,ew); end; % perform filtering G1 = conv2(conv2(es2(M1,2), w, 'valid'),w', 'valid'); G2 = conv2(conv2(es2(M2,2), w, 'valid'),w', 'valid'); % select coefficients and store them E(i1) = {selc(M1-G1, M2-G2, ap)}; % decimate M1 = dec2(G1); M2 = dec2(G2); end; % select base coefficients of last decompostion stage M1 = selb(M1,M2,mp); % loop over decomposition depth -> synthesis for i1 = zt:-1:1 % undecimate and interpolate M1T = conv2(conv2(es2(undec2(M1), 2), 2*w, 'valid'), 2*w', 'valid'); % add coefficients M1 = M1T + E{i1}; % select valid image region M1 = M1(1:zl(i1),1:sl(i1)); end; % copy image Y = M1;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值