图卷积神经网络探索金属纳米粒子的电化学稳定性

韩国科学家开发的BE-CGCNN模型通过处理四种键类型,大幅提高了预测纳米粒子电化学稳定性的准确性,使得大规模、复杂形状纳米粒子的表面Pourbaix图构建成为可能。这为电化学稳定性研究提供了新途径,尤其是在传统DFT计算难以处理的大规模系统中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ScienceAI 设为星标

第一时间掌握

新鲜的 AI for Science 资讯

bdaa65db9fd55608d43e29af71d99494.jpeg

编辑 | 绿萝


表面普尔贝图(Pourbaix diagram),也称电位-pH 图,对于了解纳米材料的电化学稳定性至关重要。然而,其基于密度泛函理论的构建对于真实规模的系统(例如几个纳米级纳米粒子)来说过于昂贵。

在此,为了加速吸附能的准确预测,来自韩国科学技术院 (KAIST)和韩国科学技术研究院(KIST)的研究团队开发了一种键型嵌入式晶体图卷积神经网络(Bond-type Embedded Crystal Graph Convolutional Neural Network,BE-CGCNN)模型,该模型对四种键类型进行了不同处理。

BE-CGCNN 的准确性显著提高,使得探索各种尺寸和形状纳米粒子(Nanoparticle,NP)的电化学稳定性成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值