将 ScienceAI 设为星标
第一时间掌握
新鲜的 AI for Science 资讯
编辑 | 绿萝
表面普尔贝图(Pourbaix diagram),也称电位-pH 图,对于了解纳米材料的电化学稳定性至关重要。然而,其基于密度泛函理论的构建对于真实规模的系统(例如几个纳米级纳米粒子)来说过于昂贵。
在此,为了加速吸附能的准确预测,来自韩国科学技术院 (KAIST)和韩国科学技术研究院(KIST)的研究团队开发了一种键型嵌入式晶体图卷积神经网络(Bond-type Embedded Crystal Graph Convolutional Neural Network,BE-CGCNN)模型,该模型对四种键类型进行了不同处理。
BE-CGCNN 的准确性显著提高,使得探索各种尺寸和形状纳米粒子(Nanoparticle,NP)的电化学稳定性成