清华大学,最新JACS

2a2a3386f77ca5fd2ddd4c9e06d719d3.jpeg

研究背景

随着碱性电解槽的火热发展,设计高效、稳定的析氧反应(OER)电催化剂受到广泛关注。OER反应有两种主要的反应机理:吸附质演化机制(AEM)和晶格氧机制(LOM)。在LOM中,晶格氧原子可以直接参与O−O耦合,利于打破标度关系并降低理论过电位。然而,活性晶格氧会使得催化剂表面结构不稳定,开发高效稳定的沿LOM机理反应的OER催化剂仍然是一个巨大的挑战。催化剂的自适应特性可以使其在OER反应过程中动态调整其表面结构和活性位点,若将自适应过程整合到OER催化剂的设计中,可以为解决当前催化剂稳定性问题提供一种很有前途的方法。

成果简介

鉴于此,清华大学王训教授和刘清达博士后、肖海副教授(共同通讯作者)等人将超薄的直径为1.1 nm的Zn-NiMoO4亚纳米线(Zn-NiMoO4 SNWs)作为预催化剂通过电化学活化将其转化为Zn-NiOOH(Zn-NiOOH SNWs)从而作为一种高效稳定的OER催化剂。作者通过多种原位表征技术揭示了Zn−NiMoO4 SNWs在OER过程中的动态重构过程及OER反应机制。Zn原子的掺入使得NiOOH SNWs的OER机制从AEM转变为LOM机制,并且在OER过程中Zn原子可以动态调整其配位结构,自适应调节与不同反应中间体的相互作用,从而显著提高了NiOOH SNWs的稳定性和活性。在10 mA cm−2电流密度下,Zn−NiOOH SNWs表现出179 mV的OER过电位,并表现出优异的晶格氧稳定性。相关成果以“Activating and Stabilizing Lattice Oxygen via Self-Adaptive Zn−NiOOH Sub-Nanowires for Oxygen Evolution Reaction”为题发表在JACS上。

图文介绍

9919542e047dd46af5352874769b12cc.jpeg

图1 Zn−NiMoO4 SNWs的结构表征。

团队采用典型的溶剂热法合成了Zn−NiMoO4 SNWs。透射电子显微镜(TEM)图像显示,Zn−NiMoO4由整齐排列的超细纳米线组成,直径约为1 nm,长度为数十微米(图1a,b)。原子力显微镜(AFM)进一步证实了Zn−NiMoO4由直径为1.1 nm的纳米线组成(图1c)。小角度X射线衍射分析(SAXRD)显示在2.27°处有一个明显的峰,表明亚纳米线之间以3.9 nm的间隔周期性排列(图1d)。X射线衍射(XRD)图谱显示制备的产物为NiMoO4(图1e),由于Zn和Ni的原子半径相似,Zn取代对NiMoO4晶格结构没有影响。原子分辨率高角环形暗场扫描TEM 图像显示亚纳米线具有低结晶度(图1f)。EDS元素映射显示Zn、Ni、Mo和O元素在整个Zn−NiMoO4 SNWs中没有发生偏析,表明Zn在NiMoO4 SNWs中成功掺入(图1g)。
62f9806dec4888cae53b8694734bd3fa.jpeg

图2 Zn−NiMoO4 SNWs的表面重构。

作者采用典型三电极体系在1 M KOH溶液中系统地评价了催化剂的OER活性。Zn−NiMoO4 SNWs的OER活性随着循环次数的增加而逐渐增加,到第三次循环时达到稳定,表明在OER过程中发生了快速表面重构过程,Zn−NiMoO4 SNWs转变为Zn−NiOOH SNWs(图2a)。与NiOOH SNWs和商用IrO2相比,Zn−NiOOH SNWs的OER活性显著提高,Zn-NiOOH SNWs仅需要192 mV的过电位就可以达到10 mA cm-2的电流密度,低于NiOOH SNWs (389 mV)和商用IrO2(264 mV)(图2b)。当基底由玻碳变为泡沫镍时,Zn-NiOOH SNWs的OER活性进一步提高,在电流密度为10 mA cm−2时,Zn-NiOOH SNWs的过电位降至179 mV。

作者采用XPS探究了Zn−NiOOH SNWs的电子结构。OER后Zn−NiMoO4中Mo6+的信号消失,表明在重构过程中,Mo物质完全浸出到电解质溶液中(图2c)。而Ni2+的结合能转移到更高的能量,并出现了Ni3+δ对应的856.6和871.4 eV位置的峰,表明形成了NiOOH(图2d)。经过OER测试后,Zn2+的结合能出现显著正位移,表明Zn在Zn−NiOOH中的氧化态更高(图2e)。

为了更全面地了解Zn-NiOOH SNWs的原子结构和局部配位,作者对Zn-NiOOH SNWs进行了Zn-K边和Ni-K边的X射线吸收光谱(XAS)分析。相对于Ni2O3参考样品,Zn−NiOOH SNWs的Ni K边吸收边的能量有所提高,表明重构催化剂中Ni的氧化态增加。傅里叶变换扩展X射线吸收精细结构(FT-EXAFS)光谱在1.44和2.38 Å处显示两个明显的峰,分别对应于γ-NiOOH的Ni−O和Ni−Ni键(图2g)。Zn-NiOOH的Zn K边XANES相对于ZnO参考样品显示出正的吸收边位移,表明Zn-NiOOH中的Zn比ZnO具有更高的氧化态(图2h)。FT-EXAFS谱中在1.53 Å附近有一个突出的峰,代表Zn−O配位,而不存在Zn-Zn配位表明Zn在NiOOH晶格内以原子分散状态存在(图2i)。上述表征说明了Zn掺杂剂以单原子形式均匀分布在NiOOH的晶格中,且在OER过程中产生了高价态的Ni和Zn,增强了Ni−O键的共价性,这可能促使NiOOH的析氧机制发生转变。
60d3afd3e8d62b5d1827ea7fff6b2637.jpeg

图3 鉴定催化活性物质及OER机理。

原位拉曼表征结果显示,随着电位的增加,NiMoO4的Mo−O振动峰ν4、ν3和ν1逐渐减弱并消失。同时,位于476和557 cm−1处的两个特征峰出现,分别属于γ-NiOOH的Eg(δNi−O)弯曲振动模式和A1g(νNi−O)拉伸振动模式,并随着电位的增加逐渐增强(图3a,b)。这一观察验证了催化剂在OER过程中进行了表面重构,生成了真正的催化物质γ-NiOOH。Zn−NiMoO4 SNWs在1.3 V vs RHE下就出现了γ-NiOOH拉曼峰,这一电位明显低于NiMoO4 SNWs(1.5 V vs RHE),表明Zn原子引入利于诱导NiMoO4在较低电位下进行表面重构。当施加电位增加到1.4 V vs RHE时,Zn-NiOOH SNWs在1079 cm−1附近观察到O−O−物种拉伸振动的拉曼信号(图3b)。随着外加电位的增加,此拉曼峰的强度变得更强,表明在OER过程中产生了丰富的O−O−,并证实了晶格氧参与Zn-NiOOH SNWs的OER过程。

团队采用原位18O同位素标记与DEMS测量相结合以验证OER中是否有晶格氧参与。对于NiOOH SNWs,随着OER电流的增加,34O2/32O2和36O2/32O2的比值保持不变,证实NiOOH SNWs遵循AEM而不是LOM途径(图3c)。对于Zn−NiOOH SNWs,随着施加电压的增加,34O2与32O2和36O2与32O2的比值逐渐增加,这表明Zn−NiOOH SNWs中的晶格氧直接参与OER,可能通过两个晶格氧原子的耦合形成氧分子(形成36O2)(图3d)。

bb671ecc1b1f3aba683739deebc9161c.jpeg图4 晶格氧稳定性分析。
团队在碱性电解质中以恒定电流密度下评估了催化剂中晶格氧的稳定性。与NiOOH SNWs相比,Zn-NiOOH SNWs的稳定性得到了显著提高,在200 mA cm-2下连续工作800 h后,过电位的增加可以忽略不计,证实了亚纳米结构和锌掺杂对NiOOH晶格氧稳定性的促进作用(图4a)。Zn−NiOOH SNWs耐久性优于最近报道的涉及晶格氧机制的最先进的催化剂(图4b)。

团队采用ICP监测了OER过程中电解液中金属离子的浓度变化。在初始阶段Zn、Ni和Mo的浓度迅速上升,并在20 min内趋于稳定,表明表面重构过程中金属元素发生浸出并趋于平衡状态(图4c)。在随后几百小时的稳定性测试中,金属的浓度基本保持稳定。而Mo浸出浓度明显超过Ni和Zn 2~3个数量级,质量损失值超过97%(图4d),几乎所有存在于Zn−NiMoO4 SNWs中的Mo都迁移到了电解质中,表明真正的活性物质可能不是Mo。经过800 h稳定性试验,Zn−NiMoO4 SNWs中Zn和Ni的质量损失值分别低至0.8和1.7%,证实了Zn−NiOOH结构具有优异的晶格氧稳定性。稳定性测试后,Zn−NiMoO4 SNWs催化剂的亚纳米线形貌保持不变。EDS能谱图显示,Zn、Ni和O仍均匀分布在纳米线上,而Mo的信号几乎完全消失(图4e、f)。
b6d3a34b4d602778ee3e9e8987aa7c5f.jpeg

图5 OER机制分析。

作者采用密度泛函理论(DFT)计算分析了sLOM和dLOM途径的反应中间体和相应的自由能分布,其中Zn−NiOOH的近边晶格氧直接参与OER。在Zn的辅助下,晶格氧通过与水分子偶联或通过迁移偶联形成O−O键,完成sLOM和dLOM途径。O−O键的一端与Zn配位,另一端通过晶格氧连接两个Ni原子。在这些途径中,Zn的配位类型是不断变化的。锌在结合不同的氧时选择性地选择稳定的中间构型,从而促进OER活性(图5d)。Zn的配位适应性还可以导致氧空位重构,从而稳定OER环境中的表面氧空位提高催化剂稳定性(图5e)。

文献信息

Activating and Stabilizing Lattice Oxygen via Self-Adaptive Zn−NiOOH Sub-Nanowires for Oxygen Evolution Reaction. JACS, 2024.
<think>好的,用户让我帮忙整理这个ACS文献的数据,具体链接是https://pubs.acs.org/doi/epdf/10.1021/jacs.4c11085?ref=article_openPDF。首先,我需要确认用户的需求是什么。他们可能需要提取文献中的元数据,比如标题、作者、摘要,或者更详细的内容,比如实验数据、图表等。不过,用户可能没有明确说明具体需要哪些信息,所以可能需要进一步询问,但根据之前的对话历史,用户可能希望得到自动提取的方法,所以我会先假设他们需要一般的数据整理步骤。 接下来,我需要考虑这个ACS出版物的网页结构。用户提供的链接是epdf,也就是电子版的PDF链接,可能直接下载PDF文件。ACS网站通常对内容有版权保护,直接爬取可能涉及合规性问题。之前的回复中已经提到要检查网站的条款和使用协议,所以这里需要再次强调合规性,确保用户遵守ACS的规定,避免侵犯版权。 然后,我需要确定用户是否有权限下载和处理该文献。如果是开放获取的,可能没有问题,但如果是订阅内容,用户可能需要有合法的访问权限。用户可能需要使用API或者合法的方式获取数据,但ACS是否有公开的API呢?比如,CrossRef或者其他学术搜索引擎的API可能包含部分元数据,但全文可能需要通过合法途径。 接下来是技术步骤。首先,获取PDF文件。如果用户已经可以访问该文献,可以通过下载链接直接获取。然后解析PDF内容。使用工具如PyPDF2、pdfplumber或者GROBID来提取文本和结构化的数据。GROBID对于学术文献的结构化解析效果较好,可以提取标题、作者、摘要、章节、参考文献等。 用户可能需要提取元数据,比如标题、作者、摘要、发表日期、DOI等。这些通常在PDF的开头部分,也可能在网页的HTML中有结构化的数据。如果直接解析PDF,可能需要处理格式问题,比如分栏、图表干扰等。此外,ACS的PDF可能有特定的版式,需要测试解析工具的效果。 另外,用户可能需要提取实验部分的数据,比如化合物名称、反应条件、实验结果等,这可能需要更复杂的NLP工具或者正则表达式匹配。例如,使用spaCy或SciBERT来识别化学实体、方法等。不过,这需要更深入的处理和领域特定的模型。 同时,需要注意反爬虫措施。ACS可能有反爬机制,频繁请求可能导致IP被封,所以建议用户遵守robots.txt,合理设置请求间隔,或者使用API。但ACS的API可能需要订阅或权限,普通用户可能无法直接使用,所以可能需要手动下载PDF后处理。 最后,存储和整理数据。用户可能需要将提取的数据保存为结构化的格式,比如CSV、Excel或者数据库。需要指导用户如何将提取的信息组织起来,并清洗数据,处理可能的错误或重复。 总结来说,我需要分步骤说明如何从该链接获取文献,解析PDF,提取所需信息,并提醒合规性和技术注意事项。同时,要考虑到用户可能没有编程经验,可能需要给出具体的代码示例和工具使用指南,比如Python脚本调用GROBID服务,或者使用BeautifulSoup解析网页元数据。不过,如果文献需要订阅,用户可能无法直接访问,这时候可能需要建议他们通过合法渠道获取文献,或者仅处理他们已经有权访问的内容。</think>从ACS(美国化学会)出版物网站(如 `https://pubs.acs.org`)的文献中自动提取数据需要结合合规性检查、PDF解析工具和结构化数据提取技术。以下是为该文献整理的详细步骤和工具建议: --- ### **1. 合规性检查** - **阅读使用条款**:ACS的文献通常受版权保护,直接批量下载或自动化提取可能违反其服务条款。确保你有合法权限访问该文献(例如通过机构订阅或个人购买)。 - **替代方案**:如果仅需元数据(标题、作者、摘要等),可优先使用ACS提供的API(需申请权限)或通过学术搜索引擎(如 Google Scholar、PubMed)获取。 --- ### **2. 获取文献内容** #### **方法一:手动下载PDF(推荐)** - 直接访问链接下载PDF文件(需登录订阅账户)。 - **注意**:自动化爬取ACS的PDF可能触发反爬机制(如IP封禁),建议手动操作。 #### **方法二:通过DOI获取元数据** - 使用文献的DOI(`10.1021/jacs.4c11085`)从公共API提取元数据: ```python import requests doi = "10.1021/jacs.4c11085" url = f"https://api.crossref.org/works/{doi}" response = requests.get(url) metadata = response.json() # 包含标题、作者、期刊、日期等信息 ``` --- ### **3. 解析PDF内容** #### **工具推荐** 1. **GROBID(首选)** - 专门用于解析学术PDF的工具,可提取标题、作者、摘要、章节、参考文献等结构化数据。 - 部署GROBID服务后调用API: ```python import requests pdf_path = "downloaded_paper.pdf" with open(pdf_path, "rb") as f: response = requests.post("http://localhost:8070/api/processFulltextDocument", files={"input": f}) structured_xml = response.text # 获取结构化XML ``` 2. **PyPDF2/pdfplumber(简单文本提取)** - 提取纯文本(适合无复杂排版的文献): ```python import pdfplumber with pdfplumber.open("downloaded_paper.pdf") as pdf: full_text = "\n".join(page.extract_text() for page in pdf.pages) ``` --- ### **4. 提取关键信息** #### **元数据提取** - **标题、作者、摘要**:通过GROBID的XML输出直接解析。 - **DOI、发表日期**:从CrossRef API或PDF第一页提取。 #### **全文内容提取** - **章节分割**:利用GROBID识别“Introduction”、“Methods”、“Results”等章节。 - **表格/图表提取**: - **Camelot**:提取PDF中的表格数据。 - **OCR(如Tesseract)**:若图表为图片,需OCR后处理。 #### **化学实体识别** - **化学NLP工具**: - **ChemDataExtractor**:专为化学文献设计的工具,可提取化学物质、反应条件等。 - **spaCy + 化学领域模型**:自定义实体识别(需训练数据)。 --- ### **5. 数据存储** - **结构化存储**:将提取的数据存入CSV或数据库(示例): ```python import csv with open("output.csv", "w", newline="", encoding="utf-8") as f: writer = csv.writer(f) writer.writerow(["Title", "Authors", "Abstract", "DOI"]) writer.writerow([title, authors, abstract, doi]) ``` --- ### **6. 自动化注意事项** - **反爬限制**:避免高频请求ACS网站,建议手动下载后解析。 - **版权合规**:仅提取法律允许的内容(如元数据或开放获取文献)。 --- ### **示例流程** 1. **手动下载**文献PDF(确保有权限)。 2. **使用GROBID解析**获取结构化XML。 3. **提取标题、作者、摘要、参考文献**。 4. **保存为CSV文件**或数据库。 --- ### **工具链总结** | 步骤 | 工具推荐 | 输出 | |-------------------|-------------------------|---------------------| | PDF下载 | 浏览器手动下载 | PDF文件 | | 结构化解析 | GROBID | XML/TEI格式 | | 化学实体提取 | ChemDataExtractor | 化学物质、反应数据 | | 存储 | Python + CSV/SQLite | 结构化表格 | --- 如果需要进一步实现代码或针对ACS网站的具体反爬策略,请提供更多需求!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值