整理AI性能指标
Sorting out AI performance metrics
推理性能的最佳衡量标准是什么?
在人工智能加速器的世界里,对于给定的算法,芯片的性能经常以每秒万亿次的运算量(TOPS)来表示。但有许多原因说明,这可能不是最好的数据。
“客户真正想要的是每美元的高吞吐量,”人工智能加速器公司FlexLogix的首席执行官GeoffTate说。
Tate解释说,拥有更多的tops并不一定与更高的吞吐量相关。在batch size批量大小为1的边缘应用程序中尤其如此。数据中心之类的应用程序可以通过使用较大的批处理并行处理多个输入来提高其吞吐量(因为有备用的顶部),但这通常不适合边缘设备。
例如,Tate将Flex Logix’ InferX X1设备与市场领先的GPU设备进行了比较。虽然GPU提供了3到4倍的吞吐量,最高10倍,但使用的dram数量是8倍。Tate认为这使得flexlogix的架构更具资源效率。
Tate提出的每美元吞吐量指标听起来很合理,但实际上,要找到可靠的产品成本信息来进行直接比较并不容易。诸如需要多少DRAM,或者某个芯片有多少硅面积等因素可以作为成本的指标,可惜不是精确的。
Flex Logix的InfereX X1设备将于2019年年底前投产。将提供大约8.5个top。
ResNet-50公司
TOPS作为度量标准的另一个问题是,通常在运行ResNet-50时进行度量。
Tate说:“ResNet-50不是客户关心的基准,但是人报告最多的一个