将纳米颗粒(NPs)掺入聚合物中是一种强有力的策略,可以提高惰性聚合物的热力学性能或引入新的属性(光学、电子、磁性或催化性能)。传统上NPs的表面与聚合物配体接枝,由于聚合物分子在NP中引入排斥力从而能够克服粒子间吸引力。
Fig. 1 Role of three-body interactions in governing the morphology of clusters formed by polymer-grafted NPs.
新的研究发现聚合物接枝也可以用于指导NP组装和获得独特的介观形态,如一维弦和二维薄片。这些低维形态通常表现出与三维对应物(超晶格、球状聚集物)非常不同的功能特性。这种各向异性NP相的形成,来自于NPs之间的高体相互作用,即超过成对距离的粒子高阶排列对自由能的微扰修正。
Fig. 2 Machine learning approach for deriving analytical many-body potentials for modeling the effective interactions between polymer-grafted NPs in a polymer matrix.
然而,在NP组装的模拟中捕获这种相互作用是非常具有挑战性的,这是因为聚合物移植物和熔体链模拟的计算成本非常高。近年来,机器学习(ML)技术已经成为一种有效的工具,以有效地近似多体相互作用的原子系统,并已被用于加速从头计算分子动力学(MD)模拟。
Fig. 3 PMF calculations and PIP fitting results.
来自杜克大学机械工程与材料科学系的Yilong Zhou等,开发了一种独特的ML方法来发展分析多体势,它可以准确地描述聚合物基体中球形聚合物接枝NPs之间的二体和三体相互作用。