我理解错了,相机内参矩阵和相机畸变参数是两个东西,而且好像实际pnp好像没有用到相机的外参矩阵。
内参我觉得主要就是指畸变参数。畸变又分为径向和切向畸变。畸变应该是比较好理解的对吧。
https://blog.csdn.net/sunboyiris/article/details/78082699
https://blog.csdn.net/sinat_16643223/article/details/110442795
外参呢,就是平移矩阵和旋转矩阵,两个坐标系之间的关系就可以用平移矩阵加旋转矩阵描述嘛,和tf一样,这个我之前总结过对吧。
https://blog.csdn.net/sinat_16643223/article/details/114649640
https://blog.csdn.net/sunboyiris/article/details/78082699
那我们标定的时候,标定板
相机外参难道是这个意思?
https://www.guyuehome.com/7689
相机外参似乎就是相机的位姿啊,相机外参是相机外部参数啊,相机外参不就是我们要求的相机位置么!!!!!!!!!!!!!!!!
https://www.jianshu.com/p/2db2b167fb90
是不是已知内参其他几个参数可以求外参就是pnp?
标定是已知几个求相机内参?
我们这么想想,标定是不是已经知道特征点现实世界的三维坐标了,因为知道那些方格子的边长了嘛,而且知道像素点坐标。
http://blog.sina.com.cn/s/blog_15ff1a2ca0102xjd9.html
https://baijiahao.baidu.com/s?id=1603212014194819932&wfr=spider&for=pc
这里说了相机内参包括内参矩阵和畸变参数矩阵!!!!!这样就好理解说得通了。
也好理解ROS下标定就得到内参矩阵和畸变参数就可以了。做pnp也是用内参矩阵和标定参数就可以了。并没有外参。
只要获得 特征点的世界坐标(三维坐标)、2D坐标(像素坐标)、相机内参矩阵、相机畸变参数矩阵 以上四个参数即可以解得相机与标志物之间的外参(R旋转矩阵、T位置矩阵)
再回看这句话是不是有感觉了,这里都明确说了,是得到相机的外参!!!!!!!!
这个opencv里的标定程序明确说了就是计算相机内参矩阵和畸变系数。