华科杨欣-基于视觉的深度估计与定位(含深度光流位姿联合估计)学习笔记

 【华中科技大学杨欣教授:“基于视觉的深度估计与定位”-哔哩哔哩】 https://b23.tv/TKyrGvT

学习笔记

深度学习可以得到稠密光流,稠密光流可以得到稠密的特征点匹配,通过三角测量可以得到稠密的深度。

上面的需要大量样本训练,没有大量样本时实现无监督的光流和深度的联合估计。那就要构建一个无监督的损失函数。


上面这个方法也是现有大部分无监督方法所采用的一个约束。

(它这里让我想到一个刚刚看到的 【【项目原作解读】苏黎世联邦理工徐豪飞:UniMatch 统一光流、立体匹配和深度估计三个任务-哔哩哔哩】 https://b23.tv/GGq7t4C
包括我现在看单目深度估计或者基于深度学习的里程计,确实就是深度和位姿或者光流和位姿一起估计,不是单一的,这个层面再去反看自监督单目深度估计为什么那么弄可能就好理解了。) (GeoNet:基于无监督学习的深度、光流和相机位姿的联合估计 CVPR2018)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诗筱涵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值