
自动化超参数优化
文章平均质量分 95
超参数优化
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
AutoSampler:Optuna 中优化算法的自动选择
介绍会根据具体情况自动从 Optuna 中实现的采样器中选择一个采样器。使用 AutoSampler,如下面的代码示例所示,用户可以实现与 Optuna 默认设置相同或更好的优化性能,而无需知道使用哪种优化算法。在本文中,我们介绍了 10 月 31 日在 OptunaHub 上发布的 AutoSampler。我们解释了为什么根据要解决的问题需要不同的优化算法,以及 AutoSampler 自动算法选择规则背后的设计原理。然后,我们描述了如何使用 AutoSampler 并提供简要的基准测试结果。原创 2024-12-04 15:23:22 · 1080 阅读 · 0 评论 -
Optuna:超参数优化框架 github
是 Optuna 的实时 Web 仪表板。API,使用 Optuna 编写的代码具有高度模块化,并且 Optuna 的用户可以动态构建超参数的搜索空间。它们相对简单、定义明确,通常是您熟悉贡献工作流程和其他开发人员的良好起点。这些示例涵盖了多种问题设置,例如多目标优化、约束优化、修剪和分布式优化。是 Optuna 的功能共享平台。您可以使用注册的功能并发布您的软件包。Optuna 具有与各种第三方库的集成功能。请使用下面的示例代码检查 Optuna 仪表板的便利性。如果您是 Optuna 新手,请先查看。原创 2024-12-04 11:01:36 · 845 阅读 · 0 评论