
Nvidia triton部署
文章平均质量分 86
Nvidia triton部署
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
深度学习部署神器——triton-inference-server入门教程指北
肯定很多人想知道triton干啥的,学习这个有啥用?这里简单解释一下:triton可以充当服务框架去部署你的深度学习模型,其他用户可以通过http或者grpc去请求,相当于你用flask搭了个服务供别人请求,当然相比flask的性能高很多了triton也可以摘出C-API充当多线程推理服务框架,去除http和grpc部分,适合本地部署多模型,比如你有很多模型要部署,然后分时段调用,或者有pipeline,有了triton就省去你处理显存、内存和线程的麻烦注意,还有一个同名的。原创 2024-07-17 00:31:13 · 2037 阅读 · 0 评论 -
triton具体是个什么框架,triton kernel有什么特殊的地方吗
总的来说,Triton推理服务器提供了一个强大的平台来部署和优化AI模型的推理,而Triton编程语言则为GPU编程提供了一个更易用和高效的工具。Triton是一个开源的推理服务框架,主要用于部署和优化AI模型的推理过程。Triton-IR(中间表示)将多维数据。一等公民,这使得编译器能更有效地进行优。多个模型,可以在单个或多个GPU。实时、批处理、集成和音视频流)自动执行多种重要的程序优化。数据自动存储到共享内存。原创 2024-07-17 16:20:40 · 3131 阅读 · 0 评论 -
深度学习部署神器——triton-inference-server开发教程指北
肯定很多人想知道triton干啥的,学习这个有啥用?这里简单解释一下:triton可以充当服务框架去部署你的深度学习模型,其他用户可以通过http或者grpc去请求,相当于你用flask搭了个服务供别人请求,当然相比flask的性能高很多了triton也可以摘出C-API充当多线程推理服务框架,去除http和grpc部分,适合本地部署多模型,比如你有很多模型要部署,然后分时段调用,或者有pipeline,有了triton就省去你处理显存、内存和线程的麻烦。原创 2024-12-10 15:27:01 · 1173 阅读 · 0 评论 -
/ONNX/client.py nvidia triton部署
总结:这段代码从加载图片开始,对图片进行预处理,连接 Triton 推理服务器,发送推理请求,并打印模型输出的前 5 个结果。将图片转换为 PyTorch 的张量(Tensor),像素值从 0-255 转换为 0-1 的浮点数。导入 NVIDIA Triton 的 HTTP 客户端库,并将其命名为。从图片中心裁剪一个大小为 224x224 的正方形区域。,用于定义图片预处理操作(如调整大小、裁剪和归一化)。,用于将 Triton 数据类型转换为。类,用于加载和处理图片。ImageNet 数据集。原创 2024-12-11 12:05:02 · 612 阅读 · 0 评论 -
推理加速:TensorRT模型部署到Triton Inference Server
Triton Inference Server(简称Triton)是一个由NVIDIA开发的开源推理服务平台,它支持多种深度学习框架和模型格式,包括TensorRT。以下是将TensorRT模型部署到Triton的详细步骤。Triton提供了监控工具,可以监控模型的性能和状态。在模型存储库中创建一个config.pbtxt文件,用于配置模型的输入输出等参数。这里input_data.raw是您的输入数据文件,output.raw将存储推理结果。一旦模型就绪,就可以发送推理请求了。TensorRT模型部署。原创 2024-12-09 14:47:03 · 781 阅读 · 0 评论 -
Triton Inference Server镜像部署
修改。原创 2024-12-09 16:10:27 · 1141 阅读 · 0 评论 -
借着triton inference server聊一下各种batching方法
原创 Oldpan2024年06月03日 09:17北京在实际的模型部署场景中,我们一般会先优化模型的性能,这也是最直接提升模型服务性能的方式。但如果从更全局方面考虑的话,除了模型的性能,整体的调度和pipeline优化对服务的性能影响也是很大。比如LLM中提的很多的`[1],对整体LLM推理的性能影响就很大,这个不光光是提升kernel性能能够解决的问题。原创 2024-07-17 00:23:35 · 1532 阅读 · 0 评论 -
Tritonserver 在得物的最佳实践
Tritonserver是Nvidia推出的基于GPU和CPU的在线推理服务解决方案,因其具有高性能的并发处理和支持几乎所有主流机器学习框架模型的特点,是目前云端的GPU服务高效部署的主流方案。Tritonserver的部署是以模型仓库(Model Repository)的形式体现的,即需要模型文件和配置文件,且按一定的格式放置如下,根目录下每个模型有各自的文件夹。原创 2024-12-10 15:29:13 · 2111 阅读 · 0 评论 -
对Triton的一些理解
比如访存合并,按照之前(从多面体优化传承下来)的思路,应该是往IR里面加个一两层循环之类的操作,而Triton的做法则是标记诸如“sizePerThread”之类的attribute,记录访存合并的策略并验证其合法性,然后通过陡峭地lowering直接生成代码。的讨论放在一起比较,就看的很清楚了,Triton的目标就是只考虑在CUDA生态下的优化,直接考虑要解决的问题就是Pre Fetching,访存合并,Shared Memory的分配与同步,这些显然都是CUDA生态下Kernel优化的要点;原创 2024-09-29 15:04:31 · 916 阅读 · 0 评论 -
一文读懂NVIDIA Triton
它支持多模型的并发执行和动态批处理技术,这些功能显著提升了GPU资源的利用率,并优化了整个推理服务的性能。此外,Triton的多模型集成(ensemble)功能,允许将多个模型作为一个整体进行部署和推理,这不仅适用于单一的模型,还能应对需要多个模型协同工作的复杂场景,如。更广泛的框架支持:随着新框架和工具的出现,Triton可能会扩展对更多框架的支持,以适应不断变化的AI开发需求。更高效的资源管理:随着模型规模的增长,Triton可能会进一步优化资源管理策略,以支持更大规模的模型部署和推理。原创 2024-12-23 15:12:32 · 1127 阅读 · 0 评论