
游戏强化学习Dota/我的世界/王者荣耀
文章平均质量分 89
游戏强化学习Dota/我的世界/王者荣耀
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
Dreamerv3 Mastering Diverse Domains through World Models 世界模型
这篇论文介绍了DreamerV3算法,旨在通过一个通用的算法来掌握广泛的领域,从而解决人工智能中的基本挑战。原创 2025-01-13 14:16:07 · 1158 阅读 · 0 评论 -
未来已来 | 最强『世界模型』问世,AI获得“想象力“,用意念脑补周围世界,OpenAI已关注!
然而,站在你自己想象中的出租车位置,从它的角度想象周围的环境,你会感觉到出租车令人困惑的行为背后可能有一个动机:也许救护车正在靠近。其次,当提供由Genex生成的想象视频时,人类做出的决策比传统的仅图像设置更准确、更明智,特别是在需要高级空间推理的多智能体场景中。通常,在不熟悉的环境中,具身代理必须通过物理探索获得新的观察结果,从而更好的了解其周围的环境,这不可避免地是昂贵、不安全和耗时的。尽管先前的工作可以基于3D模型渲染场景的新视图,但有限的渲染距离和有限的视场限制了生成视频的范围和连贯性。原创 2024-11-21 11:19:40 · 773 阅读 · 0 评论 -
LeCun世界模型出场!Meta震撼发布首个「类人」模型,理解世界后补全半张图,自监督学习众望所归
LeCun世界模型。原创 2023-06-14 15:59:10 · 427 阅读 · 0 评论 -
游戏界「世界模型」来袭 | “AI游戏工厂”上线,开放域创建{新游戏},场景泛化能力增强N倍!
图c展示了由于时间压缩(压缩比r=4),潜在特征的数量与动作的数量不同,导致融合过程中的粒度不匹配。此外,作者扩展了该框架,用来实现自回归动作可控的游戏视频生成,进而允许生成无限长度的交互式游戏视频。目前的研究工作主要集中在特定的游戏上,这种特定于游戏的方法限制了模型模型的生成能力,从而限制了它们创建新游戏的潜力。上图展示了行为控制模块的实现细节。为了能够创建全新且多样化的游戏,作者利用了在开放域视频数据上训练的预训练视频扩散模型。从索引0到k的帧用作条件帧,而剩余的N-k帧用于预测,其中k是随机选择的。原创 2025-01-23 11:12:16 · 680 阅读 · 0 评论 -
利用离散世界模型掌握 Atari Dreamer github 强化学习
DreamerV2 从潜在状态的想象轨迹中学习参与者和评论家网络。轨迹从之前遇到的序列的编码状态开始。然后,世界模型使用选定的动作及其学习到的状态进行预测。评论家使用时间差异学习进行训练,参与者通过强化和直通梯度进行训练以最大化价值函数。为此,它使用紧凑的学习状态进行预测。这些状态由确定性部分和几个采样的分类变量组成。绘图脚本还将多次运行的分箱和聚合指标存储到单个 JSON 文件中,以便于手动绘图。这要求您设置具有 GPU 访问权限的 Docker。给训练脚本来禁用混合精度。指南中的损失缩放下进行了描述。原创 2025-01-13 13:47:15 · 1175 阅读 · 0 评论 -
dreamerv3/main.py 世界模型
获取当前文件所在目录的父目录。的第 0 个位置,优先级最高。的名称(当前目录名)赋值给。模块的包名,用于相对导入。(可能是一个包含欢迎信息。模块获取当前脚本文件。当前脚本文件的路径。自定义的路径操作类。原创 2025-01-13 15:01:40 · 707 阅读 · 0 评论 -
人工智能实验室团队获2023首届腾讯开悟人工智能全国公开赛算法工程赛道冠军
2023首届腾讯开悟2023首届腾讯开悟。原创 2025-03-03 10:11:21 · 357 阅读 · 0 评论 -
超越人类!DeepMind强化学习新突破:AI在「我的世界」中封神!
此前的最佳智能体只能达到2.3%的奖励,而DeepMind团队的MFRL智能体取得了4.63%的奖励,MBRL智能体则更是将奖励提高到5.44%,再次刷新了SOTA纪录。M5模型由于其采用了最近邻标记器(NNT),保持了所有时间步中最高的符号准确率,表明其能够更好地捕捉游戏动态,并且NNT使用的静态代码本简化了TWM的学习过程。M5: M4 + BTF:在M4的基础上,引入块教师强制 (BTF),最终的奖励达到67.42%(±0.55),成为论文中最佳的 MBRL智能体。原创 2025-03-03 11:02:57 · 818 阅读 · 0 评论 -
第二届腾讯“开悟”大赛初赛放榜,在王者峡谷中的强化学习研究还能这么快乐?
今年8月,腾讯宣布与四所国内一流高校(北京大学、电子科技大学、清华大学、中国科学技术大学)的老师合作开发基于“开悟”平台的人工智能实践课程,理论授课包括但不限于机器学习、强化学习、多智能体决策等相关的知识点,运用王者荣耀作为实践验证场景,以更轻松的方式,传授同学们AI相关知识。陈华玉至今印象最深刻的,还是初赛期间所遇到的难题,以及解决这些问题时巨大的成就感:“当发现我们想出的数据,真的有助于算法改进的时候,这种感觉还挺好的。”陈华玉说,与他有相同想法的同学很多,招人信息发出去后,马上收到了20多份简历。原创 2025-03-03 10:29:08 · 713 阅读 · 0 评论