
麻将强化学习
文章平均质量分 91
强化学习
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
机器人强化学习相关学术速递[2.17]
穿越具有稀疏立足点的危险地形对人形机器人构成了重大挑战,需要精确的足部位置和稳定的运动。现有的方法设计的四足机器人往往无法推广到人形机器人由于脚的几何形状和不稳定的形态的差异,而基于学习的方法的人形运动仍然面临着巨大的挑战,由于稀疏的立足点奖励信号和低效的学习过程中复杂的地形。为了解决这些挑战,我们引入了BeamDojo,这是一个强化学习(RL)框架,旨在实现在稀疏立足点上敏捷的人形运动。原创 2025-02-22 23:51:36 · 904 阅读 · 0 评论 -
第二届腾讯“开悟”大赛初赛放榜,在王者峡谷中的强化学习研究还能这么快乐?
今年8月,腾讯宣布与四所国内一流高校(北京大学、电子科技大学、清华大学、中国科学技术大学)的老师合作开发基于“开悟”平台的人工智能实践课程,理论授课包括但不限于机器学习、强化学习、多智能体决策等相关的知识点,运用王者荣耀作为实践验证场景,以更轻松的方式,传授同学们AI相关知识。陈华玉至今印象最深刻的,还是初赛期间所遇到的难题,以及解决这些问题时巨大的成就感:“当发现我们想出的数据,真的有助于算法改进的时候,这种感觉还挺好的。”陈华玉说,与他有相同想法的同学很多,招人信息发出去后,马上收到了20多份简历。原创 2025-03-03 10:29:08 · 717 阅读 · 0 评论 -
强化学习:被OpenAI统一流派,由DeepSeek发扬光大
原创 小栖vei 舒淼2025年02月25日 16:44北京当狗狗听你指挥坐下,你给他一块骨头当狗狗不听指挥咬断电线,你饿他一天不给食物这种训练宠物的模式在心理学中被称为操作性条件反射当这种模式进入到模型训练领域,就变成了强化学习的思想ps:5分钟读完本文,你将完全了解强化学习的前世今生,大有所获。原创 2025-03-03 11:04:24 · 973 阅读 · 0 评论 -
超越人类!DeepMind强化学习新突破:AI在「我的世界」中封神!
此前的最佳智能体只能达到2.3%的奖励,而DeepMind团队的MFRL智能体取得了4.63%的奖励,MBRL智能体则更是将奖励提高到5.44%,再次刷新了SOTA纪录。M5模型由于其采用了最近邻标记器(NNT),保持了所有时间步中最高的符号准确率,表明其能够更好地捕捉游戏动态,并且NNT使用的静态代码本简化了TWM的学习过程。M5: M4 + BTF:在M4的基础上,引入块教师强制 (BTF),最终的奖励达到67.42%(±0.55),成为论文中最佳的 MBRL智能体。原创 2025-03-03 11:02:57 · 818 阅读 · 0 评论 -
请问DeepMind和OpenAI身后的两大RL流派有什么具体的区别?
DeepMind和OpenAI都在深度强化学习领域取得了不错的成绩,但是通过分析David Sliver和Sergey Levine的一些Tutorial细节,我感觉到他们对于RL的理解和实现思路有比较大的不同。请问有没有一种对这两个RL研究机构更深入的对比?他们也关注了该问题2021 年度新知答主 关注4345 人赞同了该回答谢邀。这是个很好的问题,能看出这个差别说明RL还是上路了。这学期我正好在教Reinforcement learning的课程(课程主页。原创 2025-03-03 11:06:01 · 801 阅读 · 0 评论 -
Dreamerv3 Mastering Diverse Domains through World Models 世界模型
这篇论文介绍了DreamerV3算法,旨在通过一个通用的算法来掌握广泛的领域,从而解决人工智能中的基本挑战。原创 2025-01-13 14:16:07 · 1160 阅读 · 0 评论 -
项目是DreamerV3的重新实现 项目概览
其代码库结构清晰,模块化设计使其可扩展性强,适合在多种环境下进行实验和应用。该项目是DreamerV3的重新实现,这是一个可扩展的通用强化学习算法,旨在通过。DreamerV3项目通过世界模型的方式改进了。DreamerV3通过从经验中学习世界模型。世界模型和actor-critic策略。训练actor-critic策略。reamerV3的主要算法实现。环境交互、核心功能、JAX相关。递归状态空间模型(RSSM)多种领域中使用固定的超参数。预测动作给定的未来表示。依赖的Python包。原创 2025-01-13 14:42:43 · 417 阅读 · 0 评论 -
利用离散世界模型掌握 Atari Dreamer github 强化学习
DreamerV2 从潜在状态的想象轨迹中学习参与者和评论家网络。轨迹从之前遇到的序列的编码状态开始。然后,世界模型使用选定的动作及其学习到的状态进行预测。评论家使用时间差异学习进行训练,参与者通过强化和直通梯度进行训练以最大化价值函数。为此,它使用紧凑的学习状态进行预测。这些状态由确定性部分和几个采样的分类变量组成。绘图脚本还将多次运行的分箱和聚合指标存储到单个 JSON 文件中,以便于手动绘图。这要求您设置具有 GPU 访问权限的 Docker。给训练脚本来禁用混合精度。指南中的损失缩放下进行了描述。原创 2025-01-13 13:47:15 · 1175 阅读 · 0 评论 -
DouZero斗地主AI深度解析,以及RLCard工具包介绍
DouZero对游戏AI的开发和强化学习的研究能带来哪些启发呢?首先,简单的蒙特卡罗算法经过一些加强效果可以很好。蒙特卡罗方法没有什么超参,实现简单,在实际应用中值得一试。从简单开始,可以更好地理解问题、设计特征、快速实验。其次,(我希望)蒙特卡罗方法能再次受到重视。蒙特卡罗方法自深度学习以来一直不受重视。大多数研究都基于DQN或者Actor-Critc,算法越来越复杂、超参越来越多。DouZero表明在有些时候,蒙特卡罗方法可能有惊人的效果。什么情况下蒙特卡罗方法适用,什么情况下不适用,还需要更多的研究。原创 2025-01-13 13:54:14 · 1360 阅读 · 0 评论 -
详解ppo算法
PPO 是一种高效、稳定的策略优化算法,通过限制策略更新的幅度,克服了传统策略梯度方法的不稳定性。其简单的实现和优越的性能,使其成为深度强化学习领域的主流算法之一,被广泛应用于游戏AI(如OpenAI Five)和机器人控制等任务。PPO(Proximal Policy Optimization,近端策略优化)是深度强化学习中一种高效、稳定的策略优化算法,由 OpenAI 于。PPO 的关键是限制策略更新的幅度。目标是对新策略进行优化,同时控制策略与旧策略的差异,避免过大的策略更新。原创 2025-01-13 14:43:23 · 1825 阅读 · 0 评论 -
DeepMind 发布强化学习通用算法 DreamerV3,AI 成精自学捡钻石
在没有人类数据的情况下解决这一挑战,被广泛认为是人工智能的一个里程碑,因为在这个程序生成的开放世界环境 (open-world environment) 中,奖励稀少、探索困难、时间跨度长,这些障碍的存在使得先前的方法都需要基于人类数据或教程。DreamerV3 是第一个从 0 开始在「我的世界」中完全自学收集钻石的算法,它使得强化学习的应用范围进一步扩大,正如网友们所说,DreamerV3 已经是个成熟的通用算法了,该学会自己挂机升级打怪,跟终极 BOSS 末影龙对线了!原创 2025-01-13 16:31:07 · 776 阅读 · 0 评论 -
ppo在实际训练中非常动荡,怎么知道该何时停止呢
与训练环境类似但独立的验证环境(Validation Envir。更新时收集的样本数量(如从 2048 增加到 4096)ppo在实际训练中非常动荡,怎么知道该何时停止呢。滑动平均奖励曲线(如过去 100 个回合的平均值。,并选择合适的停止时机,同时改善训练动荡问题。最大训练回合数(如 10,000 个回合。onment),用来评估策略的泛化性能。在实际训练中,PPO 的学习过程可能会。KL 散度过大,增加 KL 惩罚系数。KL 散度过大,说明策略更新过快。KL 散度过小,说明策略更新不足。原创 2025-01-14 04:11:37 · 660 阅读 · 0 评论 -
麻将算法 mahjong-algorithm 关于麻将的各种算法fan-calculator-usage/ChineseOfficialMahjongHelper/Classes/mahjong-al
虽然是用C++编写的,但是代码不包含STL。它很容易在其他语言中使用。原创 2025-01-13 14:43:07 · 878 阅读 · 0 评论 -
dreamerv3/main.py 世界模型
获取当前文件所在目录的父目录。的第 0 个位置,优先级最高。的名称(当前目录名)赋值给。模块的包名,用于相对导入。(可能是一个包含欢迎信息。模块获取当前脚本文件。当前脚本文件的路径。自定义的路径操作类。原创 2025-01-13 15:01:40 · 707 阅读 · 0 评论 -
为什么强化学习里很少有预训练模型?
in Deep Reinforcement Learning》, 强化学习目前的主流趋势是策略决定样本,样本再更新策略,那么中间策略其实很容易影响最终策略的好坏。此外,我们也可以发现用了人类数据的Alphago怎么也比不上不用人类数据的Alphazero,那么这种情况下强化学习的预训练模型其实很难达到策略的天花板水平。,需要深厚的领域知识,数据获取的门槛高,需求也很窄。因此强化学习要出现广为人知的预训练模型,要找到具备广泛性且变化狭窄的任务,目前是很难找到的。量、大小、以及数据,已经形成了门槛,原创 2024-12-30 10:08:02 · 338 阅读 · 0 评论 -
论文推荐|近端策略优化算法(PPO)
SCHULMAN J, WOLSKI F, DHARIWAL P, 等. Proximal Policy Optimization Algorithms[M/OL]. arXiv, 2017[2024-04-07].)是一个较难确定的值,在不同的环境中有不同的选择。同时,为了检验算法在高维连续控制问题的表现,作者使用。一是PPO-Penalty,通过设置目标散度dtarg的方式实现惩罚项的。的强化算法,同时也是一种高效、稳定、强大的算法框架,具备为。的算法之一,相较于其他基于策略的强化学习算法,其在。原创 2024-12-30 13:23:43 · 1520 阅读 · 0 评论 -
强化学习学习之:TRPO,PPO 算法
然后第三部,也就是PPO进来的时候了,在第三步骤中,我们需要把优化好的reward模型结合LLM 进行PPO fine-tuning, 这个步骤应该说是基于一个高质量的reward模型对LLM 也就是我们的policy maker进行打分,从而强化LLM (也就是 policy的输出质量)。总之,TRPO 为策略优化提供了一个稳健的框架,通过管理每次更新期间允许策略改变的程度,帮助稳定训练过程并改善基于策略的方法在强化学习中的收敛性。- 重复收集数据和更新策略的过程,直到收敛或达到满意的性能水平。原创 2024-12-30 13:50:23 · 989 阅读 · 0 评论 -
PPO和TRPO算法的不同
是两种基于策略梯度方法的强化学习算法。它们的目标都是改进策略更新的稳定性和效率,但它们在实现上的设计和复杂性上有所不同。PPO(Proximal Policy Optimization)和。共轭梯度方法(Conjugate Gradient Method)二次近似(Quadratic Approximation)TRPO 的简化和改进,保留了 TRPO。,被广泛用于强化学习的实际应用中。剪切(Clipping)机制。的核心思想,但通过引入简单的。限制每次策略更新的变化幅度。[1−ϵ,1+ϵ] 范围内。原创 2024-12-30 13:32:28 · 749 阅读 · 0 评论 -
强化学习(RL)算法 中的一种基于 Actor-Critic 框架 的结构 PPO
或类似的强化学习算法。训练 Actor 和 Critic 网络。衡量某状态的“价值”。学习准确的状态值函数。原创 2024-12-30 11:40:56 · 1036 阅读 · 0 评论 -
actor critic的ppo 和在大模型中应用的ppo有什么区别
PPO(Proximal Policy Optimization)在强化学习中被广泛应用于。actor critic的ppo 和在大模型中应用的ppo有什么区别。,而在大模型(如 GPT 等语言模型)中,PPO 也被用来。环境交互(如 Atari 游戏、模拟环境。语言模型本身(如 GPT),负责生成文本。与生成模型结合的场景(如强化学习用于。如语言模型)的结合,特别是在。文本生成(如 GPT 的优化)在大模型(如 GPT)中,连续的(如机械臂的关节角度。离散的(如上下左右移动)控制任务(游戏、机器人。原创 2024-12-30 13:41:39 · 1107 阅读 · 0 评论 -
具体RM,Reward Model是怎么训练的,RM在RHLF、DPO、PPO中都是相同的吗
Reinforcement Learning with Human Feedback)框架中的核心组件,主要用来。RM 的作用虽相似,但其具体使用方式取决于训练策略(RLHF 或 DPO)。在 RLHF 中,Reward Model 是核心组件,用来指。在 DPO 中,Reward Model 的作用。阶段(训练前),而在优化过程中,DPO。RM 提供的奖励值,优化语言模型的策略。虽然 RM 的训练过程类似,但在。中,其角色和使用方式有显著区别。RM 的训练过程和使用方式在。预训练的语言模型(如 GPT)原创 2024-12-25 10:55:03 · 744 阅读 · 0 评论 -
这个UCB公式里面为什么是lnN? 这样的意义是什么
在第二项 lnNni\sqrt{\frac{\ln N}{n_i}}nilnN 中,原创 2024-12-25 11:53:58 · 718 阅读 · 0 评论 -
PPO和DPO在大模型训练的区别和优劣是什么。
DPO 是一种直接优化人类偏好的新方法,提出目的是简化 RLHF 中的训练流程,避免强化学习算法(如 PPO)带来的复杂性,同时有效训练大规模语言模型以更好地满足人类偏好。在大模型训练(如 RLHF,Reinforcement Learning with Human Feedback)中,PPO 被用来对语言模型。两者在设计目标、优化方式以及适用场景上有显著区别,以下是它们的核心概念、在大模型训练中的应用,以及各自的优劣势。在强化学习(RL)和大模型训练(尤其是大规模语言模型,如 ChatGPT)中,原创 2024-12-25 10:37:21 · 720 阅读 · 0 评论 -
麻将强化学习中的ppo
是一种流行的策略优化算法,常被用于解决复杂的序列决策问题,包括像麻将这样多动作、高维度、部分可观测的环境。PPO 适合麻将的原因在于,它在策略更新时能够平衡探索与利用,同时具备较高的稳定性和性能。它的核心思想是在优化策略时,限制策略更新的幅度,从而避免策略陷入性能下降的情况。神经网络的输入是麻将的状态表示,输出是动作分布(Actor)和状态值(Critic)。PPO 的这种裁剪机制特别适合对策略敏感的任务,比如麻将。动作空间可以用离散化的方式表示,每种动作分配唯一的编码。麻将强化学习中的ppo。原创 2024-12-27 10:38:05 · 646 阅读 · 0 评论 -
DMC网络在斗地主AI中的应用
定义)方法结合了深度学习和蒙特卡洛树搜索(MCTS),旨在通过大量模拟评估行动的价值,并使用深度神经网络近似值函数和策略函数。这使得DMC能够有效处理复杂决策问题,如斗地主游戏。核心机制价值函数近似:使用深度神经网络作为价值函数的近似器,输入为当前状态和动作,输出为该状态-动作对的估值。蒙特卡洛树搜索:在每个决策点,通过MCTS选择动作,搜索树的叶节点通过神经网络进行评估,从而实现高效的决策制定。原创 2024-12-27 11:37:39 · 438 阅读 · 0 评论