
强化学习之PPO专栏
文章平均质量分 90
强化学习之PPO专栏
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
大模型强化学习:RLHF、PPO
首先我们要理解什么是策略梯度(Policy Gradient)。以下推导过程包含很多个人理解,并不很严谨,有错误欢迎指出!粗糙理解RL的过程就是,让智能体在一个状态S下选择动作A,然后获得收益R,然后我们希望优化选择动作的策略,使得总体收益的期望最大。因为搜索空间很大,我们利用模型的预测结果决策,同时为了不让模型陷入局部最优而按蒙特卡洛方式一定比例随机游走,在这个过程中得到每个state-action对应的reward作为新的训练样本,即所谓的探索和利用()过程。对一组模型参数,可以得到一组。原创 2023-09-26 10:10:00 · 1009 阅读 · 0 评论 -
为什么RLHF中,PPO需要Critic模型而不是直接使用RewardModel
长期价值对智能体的决策具有更全面的影响,可以帮助智能体更好地评估当前状态和动作的长期效果,并指导智能体在长期时间尺度上作出更优的决策。优势函数的作用在于帮助评估当前动作的相对价值,以便在策略更新过程中确定应采取的动作。在PPO算法中,优势函数用于计算策略更新的目标,以便调整策略概率分布来提高优势函数为正的动作的概率,并降低优势函数为负的动作的概率,从而改进策略的性能。总而言之,优势函数在PPO算法中用于评估状态-动作对的相对优劣,帮助确定应该采取的动作,并在策略更新过程中引导策略向更优的方向调整。原创 2024-02-10 17:24:23 · 1729 阅读 · 0 评论 -
从0开始实现LLM:7.1、Reward/PPO/DPO/KTO/SimPO详解
这部分数据不需要多,一定要是高质量的数据集,可以是数据+score的形式,也可以是chosen和rejected的形式,只要能够正确区分不同回答的质量即可(目前基本是chosen和rejected对的形式,数据+score的形式收集成本更高,但是结果更加详细和准确)。对于LLM来说,最后一个输入token的处理结果会采样变成next_token,现在变成了score,作为所有输入token的打分结果(其实也可以取所有token生成的score进行平均,通常是直接取最后一个score,训练的效果更好一些)。原创 2024-07-22 10:57:23 · 4171 阅读 · 1 评论 -
ICML 2024 Oral | DPO是否比PPO更适合LLM,清华吴翼团队最新揭秘
相比于之前的开源工作,ReaLHF 可以在 RLHF 这个比预训练更复杂的场景下达到近乎线性的拓展性,同时具有更高的资源利用率,在 128 块 A100 GPU 上也能稳定快速地进行 RLHF 训练,相关工作已开源:https://github.com/openpsi-project/ReaLHF。那么,简单的对齐算法一定效果更好吗?想要实现效果较好的大模型对齐,高效率的训练系统是不可缺少的,在实现大规模强化学习训练上,吴翼团队有长期的积累,从 2021 年开始就搭建了专属的分布式强化学习框架。原创 2024-12-09 16:04:22 · 864 阅读 · 0 评论 -
强化学习学习之:TRPO,PPO 算法
然后第三部,也就是PPO进来的时候了,在第三步骤中,我们需要把优化好的reward模型结合LLM 进行PPO fine-tuning, 这个步骤应该说是基于一个高质量的reward模型对LLM 也就是我们的policy maker进行打分,从而强化LLM (也就是 policy的输出质量)。总之,TRPO 为策略优化提供了一个稳健的框架,通过管理每次更新期间允许策略改变的程度,帮助稳定训练过程并改善基于策略的方法在强化学习中的收敛性。- 重复收集数据和更新策略的过程,直到收敛或达到满意的性能水平。原创 2024-12-30 13:50:23 · 989 阅读 · 0 评论 -
PPO训练-Loss/Policy
调整学习率与clip参数以提高训练稳定性。增大和,提升价值函数拟合与探索能力。引入动态熵系数与 KL 散度约束,进一步优化策略更新。检查奖励信号与 Replay Buffer 设置,确保样本多样性与奖励尺度合理。您可以根据任务具体需求逐步调整这些超参数,并通过定量指标(如胜率)评估模型表现的提升效果。其中你给出的建议如下:增加训练 Epochs:当前只进行了 1 个 Epoch,可以适当增加 Epoch 数量(如 3~5),并减小每批数据量(batch_size)以更稳定地优化。原创 2025-01-06 12:00:22 · 1550 阅读 · 0 评论 -
南昌大论文]基于改进的PPO算法的非完备信息机器博弈的研究与应用_曾旺-王命延
这篇论文研究了基于改进的PPO算法的非完备信息机器博弈,特别是以四人竞技麻将为研究对象,旨在解决非完备信息博弈中的麻将出牌决策问题。原创 2025-01-07 23:43:23 · 675 阅读 · 0 评论 -
ppo在实际训练中非常动荡,怎么知道该何时停止呢
与训练环境类似但独立的验证环境(Validation Envir。更新时收集的样本数量(如从 2048 增加到 4096)ppo在实际训练中非常动荡,怎么知道该何时停止呢。滑动平均奖励曲线(如过去 100 个回合的平均值。,并选择合适的停止时机,同时改善训练动荡问题。最大训练回合数(如 10,000 个回合。onment),用来评估策略的泛化性能。在实际训练中,PPO 的学习过程可能会。KL 散度过大,增加 KL 惩罚系数。KL 散度过大,说明策略更新过快。KL 散度过小,说明策略更新不足。原创 2025-01-14 04:11:37 · 660 阅读 · 0 评论 -
请详述ppo算法原理,并且特别描述怎么平衡探索利用相关策略的
PPO避免了TRPO中复杂的二次优化过程,计算更高效。通过剪辑目标函数和熵正则化,PPO有效平衡了策略更新的幅度和探索。PPO适用于离散和连续动作空间,且在多个复杂任务中表现优秀。总体而言,PPO通过剪辑机制和熵正则化巧妙地平衡了探索与利用,使其成为强化学习中一种稳定且高效的算法。原创 2025-02-10 10:40:05 · 1023 阅读 · 0 评论 -
actor critic的ppo 和在大模型中应用的ppo有什么区别
PPO(Proximal Policy Optimization)在强化学习中被广泛应用于。actor critic的ppo 和在大模型中应用的ppo有什么区别。,而在大模型(如 GPT 等语言模型)中,PPO 也被用来。环境交互(如 Atari 游戏、模拟环境。语言模型本身(如 GPT),负责生成文本。与生成模型结合的场景(如强化学习用于。如语言模型)的结合,特别是在。文本生成(如 GPT 的优化)在大模型(如 GPT)中,连续的(如机械臂的关节角度。离散的(如上下左右移动)控制任务(游戏、机器人。原创 2024-12-30 13:41:39 · 1108 阅读 · 0 评论 -
PPO算法 打油诗rap
Trust Region受限制,策略稳步准能行!Proximal Policy,优化之道,Proximal Policy,优化最火,Batch大小设对,别多也别太少,范围Clip调好,训练才叫高效!泛化能力提升,未来就更有样子!PPO algo,稳中求破,π新比π旧,算个Ratio,Entropy他的加权,鼓励。强化学习王者,实力绝不糊弄!目标函数,Obj设计奇妙,entropy奖励的加入,超参数调优,细节不能放松,动作离散连续,PPO全控,A值告诉你,差距有多大,多步采样,数据重复利用,原创 2025-01-05 01:30:20 · 241 阅读 · 0 评论 -
请详述ppo和dpo的区别和优劣|详解ppo原理|
PPO 是一种高效且稳定的策略优化算法,通过引入裁剪机制限制策略更新幅度,从而在保证策略更新稳定性的同时,有效地进行策略优化。其简单易实现的特点使其成为强化学习中的一种常用算法,并在多种应用场景中表现出色。PPO 的成功表明,在强化学习中,稳定和高效的策略更新是实现高性能的重要因素。策略梯度目标函数 𝐽(𝜃)J(θ) 表示策略 𝜋𝜃πθ 下的期望累积回报。通过最大化这个目标函数,我们可以优化策略,使其在环境中获得更高的累积奖励。策略梯度方法直接优化策略的参数,通过计算目标函数的梯度。原创 2024-07-10 16:45:00 · 5984 阅读 · 0 评论 -
麻将强化学习中的ppo
是一种流行的策略优化算法,常被用于解决复杂的序列决策问题,包括像麻将这样多动作、高维度、部分可观测的环境。PPO 适合麻将的原因在于,它在策略更新时能够平衡探索与利用,同时具备较高的稳定性和性能。它的核心思想是在优化策略时,限制策略更新的幅度,从而避免策略陷入性能下降的情况。神经网络的输入是麻将的状态表示,输出是动作分布(Actor)和状态值(Critic)。PPO 的这种裁剪机制特别适合对策略敏感的任务,比如麻将。动作空间可以用离散化的方式表示,每种动作分配唯一的编码。麻将强化学习中的ppo。原创 2024-12-27 10:38:05 · 646 阅读 · 0 评论 -
具体RM,Reward Model是怎么训练的,RM在RHLF、DPO、PPO中都是相同的吗
Reinforcement Learning with Human Feedback)框架中的核心组件,主要用来。RM 的作用虽相似,但其具体使用方式取决于训练策略(RLHF 或 DPO)。在 RLHF 中,Reward Model 是核心组件,用来指。在 DPO 中,Reward Model 的作用。阶段(训练前),而在优化过程中,DPO。RM 提供的奖励值,优化语言模型的策略。虽然 RM 的训练过程类似,但在。中,其角色和使用方式有显著区别。RM 的训练过程和使用方式在。预训练的语言模型(如 GPT)原创 2024-12-25 10:55:03 · 744 阅读 · 0 评论 -
论文推荐|近端策略优化算法(PPO)
SCHULMAN J, WOLSKI F, DHARIWAL P, 等. Proximal Policy Optimization Algorithms[M/OL]. arXiv, 2017[2024-04-07].)是一个较难确定的值,在不同的环境中有不同的选择。同时,为了检验算法在高维连续控制问题的表现,作者使用。一是PPO-Penalty,通过设置目标散度dtarg的方式实现惩罚项的。的强化算法,同时也是一种高效、稳定、强大的算法框架,具备为。的算法之一,相较于其他基于策略的强化学习算法,其在。原创 2024-12-30 13:23:43 · 1522 阅读 · 0 评论 -
详解ppo算法
PPO 是一种高效、稳定的策略优化算法,通过限制策略更新的幅度,克服了传统策略梯度方法的不稳定性。其简单的实现和优越的性能,使其成为深度强化学习领域的主流算法之一,被广泛应用于游戏AI(如OpenAI Five)和机器人控制等任务。PPO(Proximal Policy Optimization,近端策略优化)是深度强化学习中一种高效、稳定的策略优化算法,由 OpenAI 于。PPO 的关键是限制策略更新的幅度。目标是对新策略进行优化,同时控制策略与旧策略的差异,避免过大的策略更新。原创 2025-01-13 14:43:23 · 1828 阅读 · 0 评论 -
PPO和TRPO算法的不同
是两种基于策略梯度方法的强化学习算法。它们的目标都是改进策略更新的稳定性和效率,但它们在实现上的设计和复杂性上有所不同。PPO(Proximal Policy Optimization)和。共轭梯度方法(Conjugate Gradient Method)二次近似(Quadratic Approximation)TRPO 的简化和改进,保留了 TRPO。,被广泛用于强化学习的实际应用中。剪切(Clipping)机制。的核心思想,但通过引入简单的。限制每次策略更新的变化幅度。[1−ϵ,1+ϵ] 范围内。原创 2024-12-30 13:32:28 · 749 阅读 · 0 评论 -
前瞻信息生成]基于改进的 PPO 算法的非完备信息机器博弈的研究与应用
在论文中,前瞻信息的生成过程是通过博弈树搜索算法实现的。:从当前局面开始,使用博弈树搜索算法向下搜索最多三层。搜索树的根节点表示当前局面,每个节点代表一个可能的决策点边表示可能的行动。出牌探索节点模拟随机事件(如摸牌摸到有效牌节点:为了保证搜索树在规定时间内给出结果,搜索深度被限制在三层。超过三层时,节点的值用估值函数计算。:用于评估节点的价值。剩余牌总数。最小张数(向听数)有效牌的平均个数:将搜索树得到的信息进行特征编码,包括局部最优弃牌动作、选择的牌型和最大番型等信息。原创 2025-01-09 01:29:55 · 817 阅读 · 0 评论 -
强化学习(RL)算法 中的一种基于 Actor-Critic 框架 的结构 PPO
或类似的强化学习算法。训练 Actor 和 Critic 网络。衡量某状态的“价值”。学习准确的状态值函数。原创 2024-12-30 11:40:56 · 1036 阅读 · 0 评论 -
[麻将AI 2nd PPO]The Report of Team ALONG for IJCAI 2020 Mahjong AI Competition
近年来,基于深度学习方法的AI在许多具有挑战性的任务上取得了人类水平的性能,如围棋、国际象棋以及更复杂的环境StatCraft。中国标准麻将一直是一款受欢迎的四人不完全信息游戏,但由于其复杂的玩法/计分规则和丰富的隐藏信息,对AI研究者而言极具挑战性。本研究采用两种新的学习技术——模仿学习(IL)和强化学习(RL)——来解决这一复杂问题。在模仿学习阶段,应用专家数据集训练一个ResNet结构模型。其次,我们通过大规模采样和训练来加强IL模型。实验表明,1)模仿模型表现出收集获胜条件的特性;原创 2025-01-02 11:05:19 · 897 阅读 · 0 评论 -
PPO和DPO在大模型训练的区别和优劣是什么。
DPO 是一种直接优化人类偏好的新方法,提出目的是简化 RLHF 中的训练流程,避免强化学习算法(如 PPO)带来的复杂性,同时有效训练大规模语言模型以更好地满足人类偏好。在大模型训练(如 RLHF,Reinforcement Learning with Human Feedback)中,PPO 被用来对语言模型。两者在设计目标、优化方式以及适用场景上有显著区别,以下是它们的核心概念、在大模型训练中的应用,以及各自的优劣势。在强化学习(RL)和大模型训练(尤其是大规模语言模型,如 ChatGPT)中,原创 2024-12-25 10:37:21 · 725 阅读 · 0 评论