
VIT/EVA分类模型
文章平均质量分 89
VIT/EVA分类模型
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
eva02源码详解timm库:
模块,提供神经网络操作函数,并重命名为。注意力维度、头数、偏置、dropout率。(query、key、value)矩阵。投影后的 dropout 层。函数,用于通过重新计算。模块,提供数学函数。有头的总维度,通过将。原创 2024-11-15 09:41:02 · 653 阅读 · 0 评论 -
[论文解读]本文介绍了EVA-02,一种基于Transformer的视觉表示模型,通过掩码图像建模(MIM)预训练来重建强大且稳健的语言对齐视觉特征。
本文介绍了EVA-02,一种基于Transformer的视觉表示模型,通过掩码图像建模(MIM)预训练来重建强大且稳健的语言对齐视觉特征。原创 2024-11-16 14:12:16 · 1049 阅读 · 0 评论 -
EVA-02: 用于新世纪福音neo genesis战士的视觉表示
我们推出了 EVA-02,这是一种基于 Transformer 的下一代视觉表示,通过掩码图像建模预训练来重建强大且鲁棒的语言对齐视觉特征。凭借更新的纯 Transformer 架构以及来自开放且可访问的巨型 CLIP 视觉编码器的广泛预训练,EVA-02 在各种代表性视觉任务中表现出优于先前最先进方法的性能,同时使用明显更少的参数和计算预算。值得注意的是,EVA-02 仅使用 304M 个参数,仅使用公开可用的训练数据,在 ImageNet-1K 验证集上实现了 90.0 的出色微调 top-1 准确率。原创 2024-09-27 17:34:25 · 1122 阅读 · 0 评论 -
关于eva-clip的几个问题,EVA-02通过以下方式与CLIP连接起来:目标表示选择:EVA-02使用一个具有10亿参数的巨型CLIP视觉编码器作为其掩码图像建模(MIM)预训练任务的目标表示
CLIP视觉塔是EVA-02模型中的一个强大组件,它通过提供高层次的视觉特征表示,使得EVA-02能够在各种视觉任务中表现出色。其大规模参数和对自然语言的高度对齐能力,使得EVA-02在零样本和少样本任务中也具有显著的优势。原创 2024-11-20 14:45:06 · 623 阅读 · 0 评论 -
EVA: Visual Representation Fantasies from BAAI
gy-7于 2023-09-07 20:43:12 发布版权本文介绍了EVA,一个基于CLIP的开源十亿级视觉模型,它在预训练阶段结合了高层语义信息,显著优于MIM。EVA-02版本通过结构优化和大量数据训练,表现出色,尤其在少量参数下实现高精度。EVA可用于多种下游任务,如目标检测和图像描述。摘要由CSDN通过智能技术生成本文做个简单总结,博主不是做自监督领域的,如果错误,欢迎指正。原创 2024-11-21 12:33:12 · 476 阅读 · 0 评论 -
详细解释eva02模型
EVA-02采用了更新的Transformer架构,结合了大量的预训练数据,特别是从开放且可访问的CLIP视觉编码器中进行的预训练。掩蔽图像建模:通过对输入图像进行部分遮挡,模型学习如何重建缺失的信息,从而增强其对视觉特征的理解。语言对齐特征:模型旨在生成与语言描述相一致的视觉特征,使其在多模态任务中表现出色。EVA-02作为一种新一代视觉表示模型,通过掩蔽图像建模和语言对齐特征生成,实现了在多个视觉任务上的显著性能提升。原创 2024-11-18 13:38:12 · 1000 阅读 · 0 评论 -
eva_giant_patch14_224.clip_ft_in1k 排名第九支持224
EVA-CLIP 图像分类模型。论文作者在 LAION-400M 上使用 CLIP 进行预训练,并在 ImageNet-1k 上进行微调。EVA-CLIP 使用 MIM 预训练图像塔。、FLIP 补丁 dropout 以及不同的优化器和 hparams 来加速训练。eva_giant_patch14_224.clip_ft_in1k 的模型卡。在某些情况下,原始检查点是 float16。或 bfloat16,如果愿意,请参阅原始检查点。中探索该模型的数据集和运行时指标。为了与其他模型保持一致,检查。原创 2024-11-20 10:18:51 · 818 阅读 · 0 评论 -
stable diffusion中的UNet结构,中使用 CLIP 的 ViT-L/14 的文本编码器),用于将用户输入的 Prompt 文本转化成 text embedding
文本编码器(在 Stable DiffusioViT-L/14这三个部分是相互独立的,其中最重要的是 UNET 结构。UNET 是从噪音中生成图像的主要组件,在预测过程中,通过反复调用 UNET,将 UNET 预测输出的从原有的噪声中去除,得到逐步去噪后的图像表示。Stable Diffusion Model 的UNET 包含约 860M的参数,以 float32 的精度编码大概需要3.4G 的存储空间。原创 2023-06-05 15:56:30 · 2454 阅读 · 1 评论 -
eva02精度,改进的Vit -> trV
这篇论文介绍了EVA-02,一种基于Transformer的视觉表示模型,通过掩码图像建模(MIM)预训练来重建强大且鲁棒的语言对齐视觉特征。原创 2024-10-15 10:37:52 · 1216 阅读 · 0 评论 -
InterViT-6B-448px-V1-5 模型卡 InternVL2-40B
其中基础瓦片大小为 448×448,瓦片数量范围为 1 至 12。同时,我们增强了预训练数据集的数据规模、质量和多样性,使得。InterViT-6B-448px-V1-5 模型卡。InternVL-聊天-V1-2-Plus。实习生ViT-6B-448px-V1-5。实习生ViT-6B-448px-V1-2。实习生ViT-6B-448px-V1-0。支持动态分辨率,超强 OCR(🔥新)InternVL-聊天-V1-5。InternVL-聊天-V1-2。InternVL-聊天-V1-1。原创 2024-07-23 17:07:34 · 1213 阅读 · 0 评论 -
OWL-ViT:图像识别领域的黑马
OWL-ViT通过将图像分割为多个对象区域,并使用Transformer模型对每个区域进行特征提取和分类,可实现高效、准确的语义分割。通过将图像分割为多个对象区域,并使用Transformer模型对每个区域进行特征提取和分类,可实现高精度的图像分类。模型优化:针对OWL-ViT的模型结构、参数设置等方面进行优化,以提高模型的识别性能和运行效率。通过捕捉图像中的上下文信息和多尺度特征,OWL-ViT能够准确地检测出图像中的目标对象,并进行定位和分类。这将使其能够适应不同领域的应用需求,提高模型的泛化能力。原创 2024-10-09 10:49:07 · 1477 阅读 · 0 评论 -
详解vit_base_patch16_224
ViT-Base模型的核心思想是将输入图像划分为多个小块(patches),并使用Transformer架构来处理这些小块。具体来说,ViT-Base使用16x16像素的patch大小,输入图像的尺寸为224x224像素,这意味着每张图像将被划分为49个patch(22416×22416=14×14=19616224×16224=14×14=196个patch)。ViT-Base(ViT-B/16)通过将图像处理任务转化为序列处理任务。原创 2024-08-20 21:29:51 · 2059 阅读 · 0 评论 -
[论文]卷积神经网络(CNN)和基于视觉变换器(Vision Transformer, ViT)的模型来进行植物识别
ResNet420模型通过结合深度学习和数据增强技术,以及自定义的损失函数,成功地提高了植物分类任务的准确率。该模型的设计强调了处理大规模数据集和类别不平衡问题的重要性,并展示了其在复杂图像分类任务中的潜力。原创 2024-10-18 10:33:39 · 909 阅读 · 0 评论 -
ViT 原理解析 (Transformers for Image Recognition at Scale)
这里增加了 class token,class token的维度是[1,768],然后将其与第1步得到的tokens进行拼接,即Cat([1, 768], [196, 768]) -> [197, 768]。从公式可以看出,其实一个词语的位置编码是由不同频率的余弦函数函数组成的,从低位到高位,余弦函数对应的频率由 1 降低到了 110000 ,按照论文中的说法,也就是,波长从 2𝜋 增加到了 10000⋅2𝜋。下面来看下ViT是如何做的。等文本数据不同,图像中包含更多的信息,并且是以像素值的形式呈现。原创 2024-08-20 21:11:16 · 1096 阅读 · 0 评论 -
小米提出LLaVA-SG | 解决ViT的Patch化所带来的视觉理解受阻问题,超越LLaVA-1.5等SOTA
大型视觉语言模型(VLMs)整合了视觉和语言模态的数据,实现了全面的多模态理解。以图像和 Query 文本为输入,VLMs可以通过结合视觉信息来回答 Query。然而,大多数VLMs使用ViT作为其视觉 Backbone ,这导致将图像感知为破碎的 Patch ,如图1(a)所示,LLaVA作为VLM Baseline。这种破碎的方法无法保留图像的固有语义信息,从而限制了VLMs的视觉理解能力。原创 2024-09-28 22:09:34 · 1082 阅读 · 0 评论