RGB-D对红外热像仪和毫米波雷达标定

为了解决低能见度环境下的传感问题,研究提出了一个结合红外热像仪和毫米波雷达的系统。重点在于通过RGB-D相机的深度信息进行两者的外部标定,解决14位温度和稀疏距离测量的标定挑战。采用LM算法进行外参标定,并通过在红外图像上投影雷达点来验证结果的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RGB-D对红外热像仪和毫米波雷达标定

Extrinsic Calibration of Thermal IR Camera and mmWave Radar by Exploiting Depth from RGB-D Camera

摘要

尽管RGB相机和激光雷达用途广泛,但据报道,在低能见度的环境下容易受到火灾或烟雾的影响。为了解决这个问题,我们引入了一个由红外热像仪和毫米波雷达组成的传感器系统。在此过程中,需要在两个传感器之间进行外部标定,而雷达的14位温度和稀疏距离测量的标定是一个挑战。提出了一种利用RGB-D传感器作为深度优化中介的多模态标定方法。为了验证相对位姿估计的正确性,我们提出了将雷达深度投影到红外相机坐标系上的定性结果。

主要贡献:使用LM算法通过RGB-D的深度信息进行红外相机与毫米波雷达的外参标定。

在这里插入图片描述

图1 外参标定结果 (b)在红外热图像上投影深度图像(c)

利用估计的外部参数在红外图像上叠加毫米波雷达点。

在这里插入图片描述
K是红外相机的内参,u是像素点,下表t,c,r分别代表红外相机、RGBD相机以及毫米波雷达。

  为了找到红外相机和毫米波雷达之间的外部标定参数,我们在红外图像上得到了N组数据在每个RGB-D相机和毫米波雷达深度点上最小值、最大值以及中间值。对N个元素的损失函数进行优化,如(2)所示。
### 毫米波雷达标定方法ATOM平台 毫米波雷达通常安装在车辆前部,具体位置位于车头处车标附近,其结构包含一块电路板一块天线板[^1]。对于毫米波雷达成像系统的校准,在AToM平台上可以实现自动化测试验证流程。 #### AToM平台概述 AToM(Automated Testing and Measurement)是一个用于传感器融合及自动驾驶功能开发的综合性软件环境。此平台支持多种类型的传感器数据处理,包括但不限于摄像头、激光雷达以及毫米波雷达的数据采集分析。 #### 雷达硬件配置 针对毫米波雷达而言,内部采用了Freescale控制芯片负责信号处理,并由TI提供的稳压电源管理芯片保障稳定供电。这些组件共同作用确保了雷达能够精确感知周围环境变化并提供可靠的目标检测信息给ADAS系统或其他上层应用逻辑模块。 #### 标定过程详解 为了使毫米波雷达正常工作并其它车载设备协同运作,必须对其进行严格的参数调整即所谓的“标定”。以下是基于AToM平台执行毫米波雷达标定时所涉及的关键步骤: - **静态目标识别**:通过固定已知距离角度的标准反射体作为参照物来评估雷达测量精度; - **动态场景重建**:利用移动物体模拟真实交通状况下的探测效果,进而优化算法模型以提高分辨率抗干扰能力; - **多传感器同步**:当存在多个不同种类或同种型号但分布在车身各部位的传感单元时,则需考虑时间戳匹配及其几何关系映射等问题,从而保证整体感知框架的一致性准确性。 ```python # Python伪代码展示如何读取来自毫米波雷达的数据流并通过AToM接口发送至云端服务器进行进一步处理 import atom_sdk as sdk def process_radar_data(stream): processed_info = sdk.process_stream(stream) return send_to_cloud(processed_info) def main(): radar_input = get_millimeter_wave_radar_input() result = process_radar_data(radar_input) if __name__ == "__main__": main() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值