深度学习预测材料的冲击温度场

材料对冲击载荷的响应对行星科学、航空航天工程和高能材料非常重要。热激发过程如化学反应和相变在能量集中处会发生显著的加速。这是由冲击波与材料微观结构相互作用产生的结果,并受复杂的耦合过程控制,而其中的过程控制机制尚未被完全了解。

a189d85b5eec45c560566bd348dd639b.jpeg Fig. 1 Schematic representation of our approach to learning shock-induced temperature fields.


这些过程大多发生在温度、压力和应变速率的极端条件下,而且其中各种能量局部集中和微观结构特征存在于不同长度和时间尺度。因此,现有的模型都无法在没有强近似假设的情况下预测冲击诱导的热点形成。

113fb5d77f878bff6dc8e44cd6cdfa2c.jpeg

Fig. 2 Ability of MISTnet to predict temperature fields for an unseen microstructure.


分子动力学(MD)已被广泛用于研究激波诱导的热点形成,包括孔隙率的坍塌、剪切、摩擦和局部塑性变形,但是MD方法需要巨大的计算成本。同时,深度学习已经被用于模拟材料在冲击载荷下的中尺度热机械响应,其精度与基于物理的模拟相当,但只需要的计算成本相对而言非常小。

f24165c8831503dc25c6f87ca524adc6.jpeg Fig. 3 Comparison of temperature fields between MD and MISTnet.


来自普渡大学材料工程学院的Alejandro Strachan教授等人,基于UNet网络结构设计了冲击诱导温度网络(MISTnet),实现了材料中冲击温度场的预测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值