关于GPS实际精度比较低,而且频率低,但是无人机GPS定点却定得和钉子一样

这篇博文和下面这篇博文一起看,都是分析GPS定点的,只是我分开写了。

 https://blog.csdn.net/sinat_16643223/article/details/119721862

像高翔说的GPS精度是10m级的,对视觉SLAM基本没什么用,只能说宏观上纠正一下。

确实GPS频率就10hz,但是实际飞控位置环肯定不是10hz

当然飞控姿态环依靠IMU就够了。

其实之前也见过TBUS单靠IMU就实现定点悬停。

确实牛逼的惯导是可以做到一定时间内不飘的,像有的上百万的惯导。环宇智行用过。

前几天不是还听高飞还是高翔讲过,什么贵一点惯导可以坚持30还是50分钟不飘,但是最后还是会飘。

不把这个弄清楚你去做GPS和T265的融合也没用,其实及见到的本地位置数据其实是飞控融合后的,并不是真正的GPS,那样和T265去融,相当于用了两次IMU,T265已经融合IMU一次了,这或许是不是为什么那么做T265和GPS融合的人没有用/mavros/local_position/pose的原因呢?,真正的GPS数据,我觉得可能就如高翔所说,对视觉SLAM没什么太大意义。怪不得我看到的视觉SLAM融合GPS都是在那种地图上大的轨迹上的融合,可能因为这种场景下GPS才能起到一些作用。

https://blog.csdn.net/u011992534/article/details/79408187?utm_medium=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-1.base&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-1.base

 可以看到王龙写GPS水平融合IMU本质和告诉气压计融合IMU一样,他说只不过把观测期间转换成了GPS

https://blog.csdn.net/wkdwl/article/details/52203099?spm=1001.2014.3001.5501

这个人也写了些

https://blog.csdn.net/xiaoxilang/article/details/80552636

 

 

《一本书看懂多旋翼无人机》P97面

这个直接说它用的互补滤波融合IMU和GPS,气压计,而且真正用在无人机上了。看来真的就是互补滤波这么简单?或者卡尔曼滤波这么简单?

https://blog.csdn.net/u014694105/article/details/98983930?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_title~default-0.base&spm=1001.2101.3001.4242

无名这篇PDF里面有详细讲

 https://download.csdn.net/download/u011992534/12263504?utm_medium=distribute.pc_relevant_t0.none-task-download-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-1.base&depth_1-utm_source=distribute.pc_relevant_t0.none-task-download-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-1.base

它这估计分为两部分,没有GPS的纯惯导估计,有GPS的时候进入卡尔曼滤波估计。这样就讲得更具体些了,这样也好理解些了!!!实际程序上是这么实现的,GPS起到一个修正的作用?

https://zhuanlan.zhihu.com/p/60207971

一个叫预测阶段,一个叫更新阶段,似乎卡尔曼滤波就是这样子的啊

https://blog.csdn.net/sinat_16643223/article/details/118873863

https://blog.csdn.net/jinking01/article/details/112846459?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EOPENSEARCH%7Edefault-12.base&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EOPENSEARCH%7Edefault-12.base

我需要明确GPS的随机模型,飘到底多飘,误差大到底多大? 这样我再仿真中就可以解决,不用大量跑到室外去解决,而且只能定性解决,数学建模之后我们可以定量解决是不是。

https://xueshu.baidu.com/usercenter/paper/show?paperid=1c6206m00h2504r0vn2t0g00kc284246&site=xueshu_se

这方面的工作应该是挺多的

https://xueshu.baidu.com/usercenter/paper/show?paperid=3ff2bcbe298d5a56ab3e76da57617642&site=xueshu_se

建模能够更为彻底地解决问题,比你拿着GPS出去各种跑测强,而且也不方便出去测现在。

发现实际专门讲GPS的书还是挺多的,这方面的研究也应该比较成熟透彻了。

这篇文章真的是给了我很好的解答,直接使用GPS的数据,也是可以定住的

从这一点看GPS还是比较可靠的,GPS没有IMU定得住,但是IMU没有GPS定不住,所以看来主要还是靠GPS。

http://shequ.dimianzhan.com/articles/278

https://blog.csdn.net/sinat_16643223/article/details/118771602

 还讲了PX4中根据GPS坐标转为本地位置坐标的代码

还说了融合会根据GPS的信号质量进行动态权重。

多方可以看出说GPS精度比较差。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诗筱涵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值