---Informationanddata
如果你被问到的问题就是现在给你一个spotify请给我设计一个音乐推荐系统period
你一定说巧妇难为无米之炊,我首先需要历史数据
基本上最能用的历史数据可以被再细分为三个主要的table1interactiontableorlogtable即每一个点击每一个购买每一个评价都是以一个(user item)pair的格式记录下来的(1)每一条记录是可以包含somecontextualinformation的比如时间戳音乐听了多久购买花了多少时间等等要动脑筋想想什么信息是有用的尽量多log下来(2)log可能不止记录了购买信息还有查看信息scrolldown看到但未被点击信息都是indicatedifferentlevelofpreference2dimentiontable:user即每一个user是有自己的metadata信息的比如年龄性别地域等等demographic信息3dimentiontable:item和上面一样只不过是item的metadata我一般不会在这个stage对item做embedding即向量化而是存最原始的raw数据---FeatureEnginneering+Modeling之前把这两个分开的原因是面试官可能会分别问这两个的问题但实际上你的featureengineering一定是要为model服务的这里给出我经常会使用的几种简单的推荐系统模型(0)rulebasedmodel(难易程度1makesense程度5)(1)转化成classifi