大多数现代 NLP 系统都遵循相当标准的方法来为各种用例训练新模型,即首先预训练,然后微调。这里, 预训练的目标是利用大量未标记的文本并构建语言理解的通用模型,然后针对各种特定的 NLP 任务(例如机器翻译、文本摘要等)进行微调。
在本博客中,我们将讨论两种流行的预训练方案,即掩码语言建模(MLM)和因果语言建模(CLM)。
没有时间阅读整个博客?然后观看这段 <60 秒的 短片 -
大多数现代 NLP 系统都遵循相当标准的方法来为各种用例训练新模型,即首先预训练,然后微调。这里, 预训练的目标是利用大量未标记的文本并构建语言理解的通用模型,然后针对各种特定的 NLP 任务(例如机器翻译、文本摘要等)进行微调。
在本博客中,我们将讨论两种流行的预训练方案,即掩码语言建模(MLM)和因果语言建模(CLM)。
没有时间阅读整个博客?然后观看这段 <60 秒的 短片 -