大模型 郭德纲生成 源码解析Crosstalk-Generation/code/train.py

该代码段主要涉及构建和初始化神经网络模型,包括使用EncoderRNN和LuongAttnDecoderRNN类的编码器和解码器,设置注意力模型,并通过Adam优化器进行训练。此外,它还处理了从checkpoint加载模型和优化器状态的功能,以便于模型的持续训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Crosstalk-Generation/code/train.py

  1. checkpoint = None 初始化一个变量 checkpoint,它可能会用来存储模型的状态。

  2. print('Building encoder and decoder ...') 输出一个消息,表明正在构建编码器和解码器。

  3. embedding = nn.Embedding(voc.n_words, hidden_size) 创建一个嵌入层,其输入维度为词汇表的大小,输出维度为隐藏层的大小

  4. encoder = EncoderRNN(voc.n_words, hidden_size, embedding, n_layers, dropout) 使用EncoderRNN类构建一个编码器。

  5. attn_model = 'dot' 设置注意力模型的类型为 'dot'。

  6. decoder = LuongAttnDecoderRNN(attn_model, embedding, hidden_size, voc.n_words, n_layers, dropout) 使用LuongAttnDecoderRNN类构建一个解码器。

  7. if loadFilename: checkpoint = torch.load(loadFilename) encoder.load_state_dict(checkpoint['en']) decoder.load_state_dict(checkpoint['de']) 如果提供了 loadFilename,则从该路径加载模型的状态,并将状态加载到编码器和解码器中。

  8. encoder = encoder.to(device) decoder = decoder.to(device) 将编码器和解码器放置到指定的设备上(CPU或者GPU)。

  9. print('Building optimizers ...') 输出一个消息,表明正在构建优化器

  10. encoder_optimizer = optim.Adam(encoder.parameters(), lr=learning_rate) decoder_optimizer = optim.Adam(decoder.parameters(), lr=learning_rate * decoder_learning_ratio) 对编码器和解码器各自创建一个Adam优化器

  11. if loadFilename: encoder_optimizer.load_state_dict(checkpoint['en_opt']) decoder_optimizer.load_state_dict(checkpoint['de_opt']) 如果提供了 loadFilename,则从checkpoint中加载优化器的状态,并将状态加载到编码器和解码器的优化器中。

  12. print('Initializing ...') 输出一个消息,表明正在进行初始化操作。

  13. start_iteration = 1 perplexity = [] print_loss = 0 初始化一些变量,包括开始的迭代次数、困惑度和打印的损失。

  14. if loadFilename: start_iteration = checkpoint['iteration'] + 1 perplexity = checkpoint['plt'] 如果提供了 loadFilename,则从checkpoint中加载开始的迭代次数和困惑度。

总的来说,这段代码的主要作用是构建和初始化模型(包括编码器和解码器),构建优化器,并从checkpoint中加载模型和优化器的状态(如果提供了checkpoint)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值