BERT之后,GLUE基准升级为SuperGLUE:难度更大
机器之心 2019-04-28 12:24
选自Medium
作者:Alex Wang等
机器之心编译
BERT 等模型的进展已让 GLUE 基准在新模型的评估方面日渐乏力,为推动 NLP 技术的进一步发展,有必要对 GLUE 指标进行更新。为此,纽约大学、Facebook 人工智能研究所、华盛顿大学和剑桥大学的多名研究者联合整理发布了 SuperGLUE 基准,其中保留了两项 GLUE 任务,另外又加入了其它五项新任务。相关工具包和数据集将于五月初发布。
GLUE 基准与 SuperGLUE 发布地址:https://gluebenchmark.com
论文:https://w4ngatang.github.io/static/papers/superglue.pdf
过去一年来,机器学习模型在 NLP 领域很多语言理解任务上的表现都获得了极大提升。Elmo、BERT、ALICE、之前被称为 BigBird 的模型(现在叫做 MT-DNN)都取得了显著进展,OpenAI GPT 也有一种非常有效的方案,即